期刊文献+
共找到908篇文章
< 1 2 46 >
每页显示 20 50 100
Modeling and Experiment of a Morphing Wing Integrated with a Trailing Edge Control Actuation System
1
作者 HE Yuanyuan GUO Shijun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第2期248-254,共7页
Morphing wing has attracted many research attention and effort in aircraft technology development because of its advantage in lift to draft ratio and flight performance.Morphing wing technology combines the lift and c... Morphing wing has attracted many research attention and effort in aircraft technology development because of its advantage in lift to draft ratio and flight performance.Morphing wing technology combines the lift and control surfaces into a seamless wing and integrates the primary structure together with the internal control system.It makes use of the wing aeroelastic deformation induced by the control surface to gain direct force control through desirable redistribution of aerodynamic forces.However some unknown mechanical parameters of the control system and complexity of the integrated structure become a main challenge for dynamic modeling of morphing wing.To solve the problem,a method of test data based modal sensitivity analysis is presented to improve the morphing wing FE model by evaluating the unknown parameters and identifying the modeling boundary conditions.An innovative seamless morphing wing with the structure integrated with a flexible trailing edge control system is presented for the investigation.An experimental model of actuation system driven by a servo motor for the morphing wing is designed and established.By performing a vibration test and the proposed modal sensitivity analysis,the unknown torsional stiffness of the servo motor and the boundary condition of the actuation mechanism model is identified and evaluated.Comparing with the test data,the average error of the first four modal frequency of the improved FE model is reduced significantly to less than 4%.To further investigate the morphing wing modeling,a wing box and then a whole morphing wing model including the skin and integrated with the trailing edge actuation system are established and tested.By using the proposed method,the FE model is improved by relaxing the constraint between the skin and actuation mechanism.The results show that the average error of the first three modal frequency of the improved FE model is reduced to less than 6%.The research results demonstrate that the presented seamless morphing wing integrated with a flexible trailing edge control surface can improve aerodynamic characteristics.By using the test data based modal sensitivity analysis method,the unknown parameter and boundary condition of the actuation model can be determined to improve the FE model.The problem in dynamic modeling of high accuracy for a morphing wing can be solved in an effective manner. 展开更多
关键词 morphing wing seamless trailing edge control surface actuation system modeling and vibration test
下载PDF
Research of Maintenance Task Interval Optimization of Elevator Hydraulic Actuation System
2
作者 CHEN Rui WANG Yiping SUN Tieyuan 《International Journal of Plant Engineering and Management》 2019年第3期169-179,共11页
In order to solve the best maintenance interval problem of the elevator hydraulic actuation systems on civil aircraft, a method based on reliability and cost minimum is introduced in this paper. The estimation of syst... In order to solve the best maintenance interval problem of the elevator hydraulic actuation systems on civil aircraft, a method based on reliability and cost minimum is introduced in this paper. The estimation of system reliability is presented by using two-parameter Weibull distributions. The parameters are estimated by using Weibull probability statistical analysis and the practical operational data. Then, the maintenance optimization model isformulated where the objective function is to minimize the expected schedule maintenance cost in a time unit. The results of numerical example show that the proposed model could scheme the optimal maintenance intervals for the considered system when the parameters are given. This research has certain significance in theoryand engineering practice. 展开更多
关键词 ELEVATOR HYDRAULIC actuation system maintenance INTERVAL minimum COST Weibull
下载PDF
An Experimental Determination of the Supply and Exhaust Pressures in an Electro-Pneumatic Clutch Actuation System
3
作者 Paul-Darlington Ibemezie Ndubuisi Innocent Ifeanyi Eneh Anthony Chidolue Nnaji 《International Journal of Modern Nonlinear Theory and Application》 2022年第3期53-59,共7页
Inlet and outlet orifices in an actuation chamber are sources through which the supply and exhaust pressures pass during the actuation process in clutch systems. They are key ingredients in an actuation chamber and ar... Inlet and outlet orifices in an actuation chamber are sources through which the supply and exhaust pressures pass during the actuation process in clutch systems. They are key ingredients in an actuation chamber and are very phenomenal in heavy-duty vehicle operation. It is these pressures that initiate linear or rotary motions in drive systems. The pressure actions are processed in an enclosure termed an actuation chamber. Oftentimes, the forces or pressures produced in an actuation chamber are unknown and immeasurable owing to a lack of precise instruments to accomplish them. This challenge can only be approached via an improvised technique that requires experimentation. This is precisely what this presentation is all about. The knowledge of these parameters is important in the study of the actuation process in electro-pneumatic clutch systems of heavy-duty vehicles. The study was done with a Mercedes Benz Actros Truck Model MP 2, 2031 Actuator chamber. An empirical and analytical approach was adopted. Meter rule, Venire Callipers and Mass Spring Balance were deployed for the experiments. Piston coil or spring, clutch distance in the actuator, the cross-sectional diameter of the actuator, and displacement in the free lengths of the coils among others were measured. The results of the experiments were analysed and used to determine the values of the supply (inlet) and exhaust (outlet) pressures which results stood at 9.61 bars and 11.299 bars, respectively. 展开更多
关键词 actuation CHAMBER Electro-Pneumatic Instruments Pressure
下载PDF
Observer-based motion axis control for hydraulic actuation systems 被引量:2
4
作者 Xiaowei YANG Yaowen GE +1 位作者 Wenxiang DENG Jianyong YAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期408-415,共8页
Unknown dynamics including mismatched mechanical dynamics(i.e.,parametric uncertainties,unmodeled friction and external disturbances)and matched actuator dynamics(i.e.,pressure and flow characteristic uncertainties)br... Unknown dynamics including mismatched mechanical dynamics(i.e.,parametric uncertainties,unmodeled friction and external disturbances)and matched actuator dynamics(i.e.,pressure and flow characteristic uncertainties)broadly exist in hydraulic actuation systems(HASs),which can hinder the achievement of high-precision motion axis control.To surmount the practical issue,an observer-based control framework with a simple structure and low computation is developed for HASs.First,a simple observer is utilized to estimate mismatched and matched unknown dynamics for feedforward compensation.Then combining the backstepping design and adaptive control,an appropriate observer-based composite controller is provided,in which nonlinear feedback terms with updated gains are adopted to further improve the tracking accuracy.Moreover,a smooth nonlinear filter is introduced to shun the“explosion of complexity”and attenuate the impact of sensor noise on control performance.As a result,this synthesized controller is more suitable for practical use.Stability analysis uncovers that the developed controller assures the asymptotic convergence of the tracking error.The merits of the proposed approach are validated via comparative experiment results applied in an HAS with an inertial load as well. 展开更多
关键词 Adaptive control Asymptotic convergence Hydraulic actuation system Sensor noise Unknown dynamics compensation
原文传递
Magnetic Actuation Systems and Magnetic Robots for Gastrointestinal Examination and Treatment
5
作者 Hongbo Sun Jianhua Liu Qiuliang Wang 《Chinese Journal of Electrical Engineering》 CSCD 2023年第1期3-28,共26页
Magnetic actuation technology(MAT)provides novel diagnostic tools for the early screening and treatment of digestive cancers,which have high morbidity and mortality rates worldwide.The application of magnetic actuatio... Magnetic actuation technology(MAT)provides novel diagnostic tools for the early screening and treatment of digestive cancers,which have high morbidity and mortality rates worldwide.The application of magnetic actuation systems and magnetic robots in gastrointestinal(GI)diagnosis and treatment to provide a comprehensive reference manual for scholars in the field of MAT research are reviewed.It describes the basic principles of magnetic actuation and magnetic field safety,introduces the design,manufacturing,control,and performance parameters of magnetic actuation systems,as well as the applicability and limitations of each system for different parts of the GI tract.It analyzes the characteristics and advantages of different types and functions of magnetic robots,summarizes the challenges faced by MAT in clinical applications,and provides an outlook on the future prospects of the field. 展开更多
关键词 Magnetic actuation medical robots capsule endoscope ELECTROMAGNETIC permanent magnets
原文传递
A framework for dynamic modelling of railway track switches considering the switch blades,actuators and control systems
6
作者 Saikat Dutta Tim Harrison +2 位作者 Christopher Ward Roger Dixon Phil Winship 《Railway Engineering Science》 EI 2024年第2期162-176,共15页
The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital... The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure. 展开更多
关键词 Railway track switch Mathematical modelling Redundant actuation Finite element analysis
下载PDF
Observer-based dynamic event-triggered control for distributed parameter systems over mobile sensor-plus-actuator networks
7
作者 穆文英 庄波 邱芳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期237-243,共7页
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov... We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance. 展开更多
关键词 distributed parameter systems event-triggered control mobile sensors mobile actuators
下载PDF
Fuzzy Proportional Integral Derivative control of a voice coil actuator system for adaptive deformable mirrors
8
作者 Ziqiang Cui Heng Zuo +4 位作者 Weikang Qiao Hao Li Fujia Du Yifan Wang Jinrui Guo 《Astronomical Techniques and Instruments》 CSCD 2024年第3期179-186,共8页
Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number... Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number of actuators,and there are problems with structural coupling and large temperature increases in their internal coils.Additionally,parameters of the traditional proportional integral derivative(PID)control cannot be adjusted in real-time to adapt to system changes.These problems can be addressed by introducing fuzzy control methods.A table lookup method is adopted to replace real-time calculations of the regular fuzzy controller during the control process,and a prototype platform has been established to verify the effectiveness and robustness of this process.Experimental tests compare the control performance of traditional and fuzzy proportional integral derivative(Fuzzy-PID)controllers,showing that,in system step response tests,the fuzzy control system reduces rise time by 20.25%,decreases overshoot by 78.24%,and shortens settling time by 67.59%.In disturbance rejection experiments,fuzzy control achieves a 46.09%reduction in the maximum deviation,indicating stronger robustness.The Fuzzy-PID controller,based on table lookup,outperforms the standard controller significantly,showing excellent potential for enhancing the dynamic performance and disturbance rejection capability of the voice coil motor actuator system. 展开更多
关键词 Adaptive optics Deformable mirror Voice coil actuator Fuzzy control
下载PDF
Practical prescribed-time fuzzy tracking control for uncertain nonlinear systems with time-varying actuators faults
9
作者 Shuxing Xuan Hongjing Liang Tingwen Huang 《Journal of Automation and Intelligence》 2024年第1期40-49,共10页
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa... The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy. 展开更多
关键词 Prescribed-time tracking control Adaptive fuzzy control Actuator faults Uncertain nonlinear system
下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems
10
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME Fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
下载PDF
Actuator and sensor fault isolation in a class of nonlinear dynamical systems
11
作者 Hamed Tirandaz Christodoulos Keliris Marios M.Polycarpou 《Journal of Automation and Intelligence》 2024年第2期57-72,共16页
Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isol... Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example. 展开更多
关键词 Actuator and sensor fault isolation Adaptive approximation Observer-based fault diagnosis Reasoning-based decision logic
下载PDF
Enhancing Stress Intensity Factor Reduction in Cracks Originating from a Circular Hole in a Rectangular Plate under Uniaxial Stress through Piezoelectric Actuation
12
作者 Gopi Krishna Konda Jens Schuster Yousuf Pasha Shaik 《Materials Sciences and Applications》 2024年第1期1-14,共14页
Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelect... Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity. 展开更多
关键词 Piezoelectric Actuators Stress Intensity Factor (SIF) Aluminium Plate VOLTAGE Finite Element Method (FEM)
下载PDF
Design and performance analysis of position-based impedance control for an electrohydrostatic actuation system 被引量:11
13
作者 Yongling FU Xu HAN +4 位作者 Nariman SEPEHRI Guozhe ZHOU Jian FU Liming YU Rongrong YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第3期584-596,共13页
Electrohydrostatic actuator(EHA) is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots.... Electrohydrostatic actuator(EHA) is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots. This paper presents the development and evaluation of positionbased impedance control(PBIC) for an EHA. Impedance control provides the actuator with compliance and facilitates the interaction with the environment. Most impedance control applications utilize electrical or valve-controlled hydraulic actuators, whereas this work realizes impedance control via a compact and efficient EHA. The structures of the EHA and PBIC are firstly introduced. A mathematical model of the actuation system is established, and values of its coefficients are identified by particle swarm optimization. This model facilitates the development of a position controller and the selection of target impedance parameters. A nonlinear proportional-integral position controller is developed for the EHA to achieve the accurate positioning requirement of PBIC. The controller compensates for the adverse effect of stiction, and a position accuracy of 0.08 mm is attained.Various experimental results are presented to verify the applicability of PBIC to the EHA. The compliance of the actuator is demonstrated in an impact test. 展开更多
关键词 actuation system AEROSPACE Electrohydrostatic actuator Force control Nonlinear dynamics Particle swarm optimization Position control
原文传递
Architecture Optimization of More Electric Aircraft Actuation System 被引量:10
14
作者 QI Haitao FU Yongling +1 位作者 QI Xiaoye LANG Yan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期506-513,共8页
The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology, which makes the combinations of different power sources and actuators beco... The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology, which makes the combinations of different power sources and actuators become extremely complex in the architecture optimization process of airborne actuation system. The traditional "trial and error" method cannot satisfy the design demands. In this paper, firstly, the composition of more electric aircraft (MEA) flight control actuation system (FCAS) is introduced, and the possible architecture quantity is calculated. Secondly, the evaluation criteria of FCAS architecture with respect to safe reliability, weight and efficiency are proposed, and the evaluation criteria values are calculated in the case that each control surface adopts the same actuator configuration. Finally, the optimization results of MEA FCAS architecture are obtained by applying genetic algorithm (GA). Compared to the traditional actuation system architecture, which only adopts servo valve controlled hydraulic actuators, the weight of the optimized more electric actuation system architecture can be reduced by 6%, and the efficiency can be improved by 30% based on the safe reliability requirements. 展开更多
关键词 more electric aircraft power-by-wire actuation system ARCHITECTURE multiobjective optimization genetic algorithms
原文传递
Active fault tolerant control for vertical tail damaged aircraft with dissimilar redundant actuation system 被引量:6
15
作者 Wang Jun Wang Shaoping +2 位作者 Wang Xingjian Shi Cun Mileta M.Tomovic 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1313-1325,共13页
This paper proposes an active fault-tolerant control strategy for an aircraft with dissimilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the e... This paper proposes an active fault-tolerant control strategy for an aircraft with dissimilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the effective vertical tail area is introduced to parameterize the damaged flight dynamic model. The nonlinear relationship between the damage degree coefficient and the corresponding stability derivatives is considered. Furthermore, the performance degradation of new input channel with electro-hydrostatic actuator (EHA) is also taken into account in the damaged flight dynamic model. Based on the accurate damaged flight dynamic model, a composite method of linear quadratic regulator (LQR) integrating model reference adaptive control (MRAC) is proposed to reconfigure the fault-tolerant control law. The numerical simulation results validate the effectiveness of the proposed fault-tolerant control strategy with accurate flight dynamic model. The results also indicate that aircraft with DRAS has better fault-tolerant control ability than the traditional ones when the vertical tail suffers from serious damage. 展开更多
关键词 Dissimilar redundant actuation system Electro-hydrostatic actuator Fault-tolerant control Linear quadratic regulator Model reference adaptivecontrol Nonlinear aircraft model Vertical tail loss
原文传递
An energy-based coupling degradation propagation model and its application to aviation actuation system 被引量:1
16
作者 Tongyang LI Shaoping WANG +2 位作者 Jian SHI Enrico ZIO Xiaoyu CUI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第4期1288-1298,共11页
The degradation of components in complex mechatronic systems involves multiple physical processes which will cause coupling interactions among nodes in the system.The interaction of nodes may be carried out not only b... The degradation of components in complex mechatronic systems involves multiple physical processes which will cause coupling interactions among nodes in the system.The interaction of nodes may be carried out not only by physical connections but also by the environment which cannot be described by single network using the traditional methods.In order to give out a unified model to quantitatively describe the coupling degradation spreading by both physical connections and environment,a novel Energy-Flow-Field Network(EFFN)and a coupling degradation model based on EFFN are proposed in this paper.The EFFN is driven by energy flow and the state transition of spatially related nodes is triggered by the dissipation energy.An application is conducted on aviation actuation system in which the degradation spreading by fluid-thermal-solid interaction is considered.The degradation path and the most probable fault reason can be obtained by combining the state transition and energy output of nodes,which is consistent with the given scenario. 展开更多
关键词 actuation system Cascading failure Complex system Failure propagation Mechatronic system
原文传递
Fault mode probability factor based fault-tolerant control for dissimilar redundant actuation system 被引量:1
17
作者 Jun WANG Shaoping WANG +2 位作者 Xingjian WANG Mileta M.TOMOVIC Cun SHI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第5期965-975,共11页
This paper presents a Fault Mode Probability Factor(FMPF) based Fault-Tolerant Control(FTC) strategy for multiple faults of Dissimilar Redundant Actuation System(DRAS)composed of Hydraulic Actuator(HA) and Ele... This paper presents a Fault Mode Probability Factor(FMPF) based Fault-Tolerant Control(FTC) strategy for multiple faults of Dissimilar Redundant Actuation System(DRAS)composed of Hydraulic Actuator(HA) and Electro-Hydrostatic Actuator(EHA). The long-term service and severe working conditions can result in multiple gradual faults which can ultimately degrade the system performance, resulting in the system model drift into the fault state characterized with parameter uncertainty. The paper proposes to address this problem by using the historical statistics of the multiple gradual faults and the proposed FMPF to amend the system model with parameter uncertainty. To balance the system model precision and computation time, a Moving Window(MW) method is used to determine the applied historical statistics. The FMPF based FTC strategy is developed for the amended system model where the system estimation and Linear Quadratic Regulator(LQR) are updated at the end of system sampling period. The simulations of DRAS system subjected to multiple faults have been performed and the results indicate the effectiveness of the proposed approach. 展开更多
关键词 Dissimilar redundant actuation system Fault mode probability factor Fault-tolerant control Linear quadratic regulator Monte Carlo simulation Moving window
原文传递
Stability Analysis of a Force-Aided Lever Actuation System for Dry Clutches with Negative Stiffness Element 被引量:1
18
作者 刘峰宇 陈俐 +1 位作者 房成亮 殷承良 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第2期218-226,共9页
A force-aided lever with a preload spring is not only force-saving but also energy-saving. Therefore, it has great potential to be applied to dry clutch actuations. However, the negative stiffness of the clutch diaphr... A force-aided lever with a preload spring is not only force-saving but also energy-saving. Therefore, it has great potential to be applied to dry clutch actuations. However, the negative stiffness of the clutch diaphragm spring introduces unstable dynamics which becomes more intensive due to the preload spring. In order to explore the intensified unstability, this paper builds dynamic models for the rotating lever coupling a negative stiffness diaphragm spring and a preload spring. The stability analysis using the Routh-Huiwitz criterion shows that the open-loop system can never be stable due to the negative stiffness. Even if the diaphragm spring stiffness is positive, the system is still unstable when the preload of the spring exceeds an upper limit. A proportionalintegral-derivative(PID) closed-loop scheme addressing this problem is designed to stabilize the system. The stability analysis for the closed-loop system shows that stable region emerges in spite of the negative stiffness; the more the negative stiffness is, the less the allowed preload is. Further, the influences of the dimensions and PID parameters on the stability condition are investigated. Finally, the transient dynamic responses of the system subjected to disturbance are compared between the unstable open-loop and stabilized closed-loop systems. 展开更多
关键词 negative stiffness preload spring stability dry clutch actuation system force-aided lever
原文传递
A fault tolerant single sided matrix converter for flight control actuation systems
19
作者 Xiao-yan HUANG Mao-jing JIY +4 位作者 Jian-cheng ZHANG Qin-fen LU You-tong FANG Andrew GOODMAN Chris GERADA 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第11期866-874,共9页
We describe a single sided matrix converter (SSMC) designed for safety critical applications like flight control actuation systems. Dynamic simulations of multi-phase SSMC using Matlab Simulink are carried out to eval... We describe a single sided matrix converter (SSMC) designed for safety critical applications like flight control actuation systems. Dynamic simulations of multi-phase SSMC using Matlab Simulink are carried out to evaluate the fault tolerance capabilities. Investigation into different numbers of phases and power converter topologies under single phase open circuit, single switch open circuit, and single switch short circuit has been executed. The simulation results confirm 5-phase SSMC design as a compromise between fault tolerance and converter size/volume. A 5-phase SSMC prototype was built. Experimental results verify the effectiveness of our design. 展开更多
关键词 Single sided matrix converter Fault tolerance Flight control actuation systems
原文传递
Multi-level virtual prototyping of electromechanical actuation system for more electric aircraft 被引量:10
20
作者 Jian FU Jean-Charles MARE +1 位作者 Liming YU Yongling FU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第5期892-913,共22页
Electromechanical actuators(EMAs) are becoming increasingly attractive in the field of more electric aircraft because of their outstanding benefits, which include reduced fuel burn and maintenance cost, enhanced sys... Electromechanical actuators(EMAs) are becoming increasingly attractive in the field of more electric aircraft because of their outstanding benefits, which include reduced fuel burn and maintenance cost, enhanced system flexibility, and improved management of fault detection and isolation. However, electromechanical actuation raises specific issues when being used for safetycritical aerospace applications like flight controls: huge reflected inertia to load, jamming-type failure, and increase of backlash with service due to wear and local dissipation of heat losses for thermal balance. This study proposes an incremental approach for virtual prototyping of EMAs. It is driven by a model-based system engineering process in order to enable simulation-aided design.Best practices supported by Bond graph formalism are suggested to develop a model's structure efficiently and to make the model ready for use(or extension) by addressing the above mentioned issues. Physical effects are progressively introduced, and the realism of lumped-parameter models is increased step-by-step. In particular, multi-level component models are architected to ensure continuity between engineering activities. The models are implemented in the AMESim simulation environment, and simulation responses are given to illustrate how they can be used for preliminary sizing, control design, thermal balance verification, and faults to failure analysis. The proposed best practices intend to provide engineers with fast, reusable, and efficient means to assess performance virtually and enhance maturity, performance, and robustness. 展开更多
关键词 Bond graph Electromechanical actuator Flight control Model-based system engi-neering More electric aircraft Power-by-wire
原文传递
上一页 1 2 46 下一页 到第
使用帮助 返回顶部