Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isol...Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example.展开更多
An application of the multiobjective fault detection and isolation(FDI) approach to an air-breathing hypersonic vehicle(HSV) longitudinal dynamics subject to disturbances is presented.Maintaining sustainable and s...An application of the multiobjective fault detection and isolation(FDI) approach to an air-breathing hypersonic vehicle(HSV) longitudinal dynamics subject to disturbances is presented.Maintaining sustainable and safe flight of HSV is a challenging task due to its strong coupling effects,variable operating conditions and possible failures of system components.A common type of system faults for aircraft including HSV is the loss of effectiveness of its actuators and sensors.To detect and isolate multiple actuator/sensor failures,a faulty linear parameter-varying(LPV) model of HSV is derived by converting actuator/system component faults into equivalent sensor faults.Then a bank of LPV FDI observers is designed to track individual fault with minimum error and suppress the effects of disturbances and other fault signals.The simulation results based on the nonlinear flexible HSV model and a nominal LPV controller demonstrate the effectiveness of the fault estimation technique for HSV.展开更多
基金the European Research Council(ERC)under the ERC Synergy grant agreement No.951424(Water-Futures)the European Union’s Horizon 2020 research and innovation programme under grant agreement No.739551(KIOS CoE)the Government of the Republic of Cyprus through the Directorate General for European Programmes,Coordination and Development。
文摘Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example.
文摘An application of the multiobjective fault detection and isolation(FDI) approach to an air-breathing hypersonic vehicle(HSV) longitudinal dynamics subject to disturbances is presented.Maintaining sustainable and safe flight of HSV is a challenging task due to its strong coupling effects,variable operating conditions and possible failures of system components.A common type of system faults for aircraft including HSV is the loss of effectiveness of its actuators and sensors.To detect and isolate multiple actuator/sensor failures,a faulty linear parameter-varying(LPV) model of HSV is derived by converting actuator/system component faults into equivalent sensor faults.Then a bank of LPV FDI observers is designed to track individual fault with minimum error and suppress the effects of disturbances and other fault signals.The simulation results based on the nonlinear flexible HSV model and a nominal LPV controller demonstrate the effectiveness of the fault estimation technique for HSV.