Liquid marbles (non-stick droplets) containing crude petroleum are reported. Liquid marbles were ob- tained by use of fluorinated decyl polyhedral oligomeric silsequioxane (FD-POSS) powder. Marbles containing crud...Liquid marbles (non-stick droplets) containing crude petroleum are reported. Liquid marbles were ob- tained by use of fluorinated decyl polyhedral oligomeric silsequioxane (FD-POSS) powder. Marbles containing crude petroleum remained stable on a broad diversity of solid and liquid supports. The effective surface tension of marbles filled with petroleum was established. The mechanism of friction of the marbles is discussed. Actuation of liquid marbles containing crude petroleum with an electric field is presented.展开更多
This article presented a four-fingered soft bionic robotic gripper with variable effective actuator lengths. By combining approaches of finite element analysis, quasi-static analytical modeling, and experimental measu...This article presented a four-fingered soft bionic robotic gripper with variable effective actuator lengths. By combining approaches of finite element analysis, quasi-static analytical modeling, and experimental measurements, the deformation of the single soft actuator as a function of air pressure input in free space was analyzed. To investigate the effect of the effective actuator length on the gripping per- formance of the gripper, we conducted systematical experiments to evaluate the pull-off force, the actuation speed, the precision and error tolerance of the soft gripper while grasping objects of various sizes and shapes. A combination of depressurization and pressurization in actuation as well as applying variable effective actuator length enhanced the gripper's performance significantly, with no sensors. For example, with tunable effective actuator length, the gripper was able to grasp objects ranging from 2 mm 170 mm robustly. Under the optimal length, the gripper could generate the maximum pull-off force for the corresponding object size; the precision and the error tolerance of the gripper were also significantly improved compared to those of the gripper with full-length. Our soft robotic prototype exhibits a simple control and low-cost approach of gripping a wide range of objects and may have wide leverage for future industrial operations.展开更多
Liquid crystalline vitimers (LC-vitrimers) can be easily processed into complex three-dimensional configurations. In this paper, we present a photo-responsive LC-vitrimer by simply introducing a photo- thermal agent...Liquid crystalline vitimers (LC-vitrimers) can be easily processed into complex three-dimensional configurations. In this paper, we present a photo-responsive LC-vitrimer by simply introducing a photo- thermal agent aniline trimer into the LC-vitrimer system. As aniline trimer acts as a curing agent, it can be homogeneously dispersed in the material, avoiding aggregation which commonly happens to nano- fillers. As a result, the resultant polymer not only can perform three light-controlled functions (welding, healing and shape memory), but also can be prepared into aligned monodomain LC actuators with strains of about 40%-45%.展开更多
基金made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research(Grant 52043-UR5)
文摘Liquid marbles (non-stick droplets) containing crude petroleum are reported. Liquid marbles were ob- tained by use of fluorinated decyl polyhedral oligomeric silsequioxane (FD-POSS) powder. Marbles containing crude petroleum remained stable on a broad diversity of solid and liquid supports. The effective surface tension of marbles filled with petroleum was established. The mechanism of friction of the marbles is discussed. Actuation of liquid marbles containing crude petroleum with an electric field is presented.
基金Acknowledgment This work was supported by the National Science Foundation support projects, China (grant numbers 61633004, 61403012, and 61333016) the Open Research Fund of Key Laboratory Space Utilization, Chinese Academy of Sciences (No.6050000201607004). Many thanks to Ziyu Ren and Hui Wang for their kind help in implementing the experimental apparatus, con- ducting the force experiments and performing the data analysis. Thanks to Xi Fang for her kind help in revising the paper.
文摘This article presented a four-fingered soft bionic robotic gripper with variable effective actuator lengths. By combining approaches of finite element analysis, quasi-static analytical modeling, and experimental measurements, the deformation of the single soft actuator as a function of air pressure input in free space was analyzed. To investigate the effect of the effective actuator length on the gripping per- formance of the gripper, we conducted systematical experiments to evaluate the pull-off force, the actuation speed, the precision and error tolerance of the soft gripper while grasping objects of various sizes and shapes. A combination of depressurization and pressurization in actuation as well as applying variable effective actuator length enhanced the gripper's performance significantly, with no sensors. For example, with tunable effective actuator length, the gripper was able to grasp objects ranging from 2 mm 170 mm robustly. Under the optimal length, the gripper could generate the maximum pull-off force for the corresponding object size; the precision and the error tolerance of the gripper were also significantly improved compared to those of the gripper with full-length. Our soft robotic prototype exhibits a simple control and low-cost approach of gripping a wide range of objects and may have wide leverage for future industrial operations.
基金supported by the National Natural Science Foundation of China (Nos. 20161300524 and 21274075)
文摘Liquid crystalline vitimers (LC-vitrimers) can be easily processed into complex three-dimensional configurations. In this paper, we present a photo-responsive LC-vitrimer by simply introducing a photo- thermal agent aniline trimer into the LC-vitrimer system. As aniline trimer acts as a curing agent, it can be homogeneously dispersed in the material, avoiding aggregation which commonly happens to nano- fillers. As a result, the resultant polymer not only can perform three light-controlled functions (welding, healing and shape memory), but also can be prepared into aligned monodomain LC actuators with strains of about 40%-45%.