A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stoc...A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective.展开更多
In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new...In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.展开更多
The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite ...The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.展开更多
This paper studies the problem of finite-time synchronization for a class of heterogeneous complex networks which not only have node time-varying delays and coupled time-varying delays but also contain uncertain distu...This paper studies the problem of finite-time synchronization for a class of heterogeneous complex networks which not only have node time-varying delays and coupled time-varying delays but also contain uncertain disturbance. An appropriate controller is designed such that this type of network can be synchronized within a finite time. By constructing a proper Lyapunov function and using the finite-time stability theory, the sufficient conditions for the network to achieve finite-time synchronization are given and the finite time is estimated. Finally, the conclusions obtained are extended to the case of homogeneous complex networks with time-varying delays and uncertain disturbance.展开更多
The robust stabilization problem for uncertain systems with time-varying delay has been discussed. A new sufficient criterion is obtained to guarantee the closed-loop system robust stabilizable. The controller gain ma...The robust stabilization problem for uncertain systems with time-varying delay has been discussed. A new sufficient criterion is obtained to guarantee the closed-loop system robust stabilizable. The controller gain matrix is included in a Hamiltonian matrix. The Hamiltonian matrix can be constructed by the boundedness of the uncertainties. Some examples are given to illustrate the feasibility of the criterion.展开更多
In this paper,the robust stability issue of switched uncertain multidelay systems resulting from actuator failures is considered.Based on the average dwell time approach,a set of suitable switching signals is designed...In this paper,the robust stability issue of switched uncertain multidelay systems resulting from actuator failures is considered.Based on the average dwell time approach,a set of suitable switching signals is designed by using the total activation time ratio between the stable subsystem and the unstable one.It is first proven that the resulting closed-loop system is robustly exponentially stable for some allowable upper bound of delays if the nominal system with zero delay is exponentially stable under these switching laws.Particularly,the maximal upper bound of delays can be obtained from the linear matrix inequalities.At last,the effectiveness of the proposed method is demonstrated by a simulation example.展开更多
Containment control of first-order multi-agent systems with uncertain topologies and communication timedelays is studied. Suppose system topologies are dynamically changed, a containment control algorithm with time-va...Containment control of first-order multi-agent systems with uncertain topologies and communication timedelays is studied. Suppose system topologies are dynamically changed, a containment control algorithm with time-varying delays is presented. The stability of the control algorithm is studied under the assumption that communication topologies are jointly-connected, and constraint condition of distributed containment control for delayed multi-agent systems is derived with the aid of Lyapunov–Krasovskii function. Simulation results are provided to prove the correctness and effectiveness of the conclusion.展开更多
Purpose-This paper is concerned with non-fragile robust H_(∞)control problems for nonlinear networked control systems(NCSs)with time-varying delay and unknown actuator failures.The paper aims to discuss these issues....Purpose-This paper is concerned with non-fragile robust H_(∞)control problems for nonlinear networked control systems(NCSs)with time-varying delay and unknown actuator failures.The paper aims to discuss these issues.Design/methodology/approach-The system parameters are allowed to have time-varying uncertainties and the actuator faults are unknown but whose upper and lower bounds are known.By using some lemmas,uncertainties can be replaces with the known values.By taking the exogenous disturbance and network transmission delay into consideration,a delay nonlinear system model is constructed.Findings-Based on Lyapunov stability theory,linear matrix inequalities(LMIs)and free weighting matrix methods,the sufficient conditions for the existence of the non-fragile robust H_(∞)controller gain are derived and which can obtained by solving the LMIs.Finally,a numerical example is provided to illustrate the effectiveness of the proposed methods.Originality/value-The introduced approach is interesting for NCSs with time-varying delay and unknown actuator failures.展开更多
The problem of delay-dependent robust stability for uncertain linear singular neutral systems with time-varying and distributed delays is investigated. The uncertainties under consideration are norm bounded,and possib...The problem of delay-dependent robust stability for uncertain linear singular neutral systems with time-varying and distributed delays is investigated. The uncertainties under consideration are norm bounded,and possibly time varying. Some new stability criteria,which are simpler and less conservative than existing results,are derived based on a new class of Lyapunov-Krasovskii functionals combined with the descriptor model transformation and the decomposition technique of coeffcient matrix and formulated in...展开更多
Node dynamics and network topologies play vital roles in determining the network features and network dynamical behaviors.Thus it is of great theoretical significance and practical value to recover the topology struct...Node dynamics and network topologies play vital roles in determining the network features and network dynamical behaviors.Thus it is of great theoretical significance and practical value to recover the topology structures and system parameters of uncertain complex networks with available information. This paper presents an adaptive anticipatory synchronization-based approach to identify the unknown system parameters and network topological structures of uncertain time-varying delayed complex networks in the presence of noise. Moreover, during the identification process, our proposed scheme guarantees anticipatory synchronization between the uncertain drive and constructed auxiliary response network simultaneously. Particularly, our method can be extended to several special cases. Furthermore, numerical simulations are provided to verify the effectiveness and applicability of our method for reconstructing network topologies and node parameters. We hope our method can provide basic insight into future research on addressing reconstruction issues of uncertain realistic and large-scale complex networks.展开更多
基金supported by the National Natural Science Foundation of China(61773387)the China Postdoctoral Fund(2016M5909712017T100770)。
文摘A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective.
基金Natural Science Foundation of Henan Education Department (No.2007120005).
文摘In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.
基金Project (Nos. 60434020 and 60604003) supported by the NationalNatural Science Foundation of China
文摘The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.
文摘This paper studies the problem of finite-time synchronization for a class of heterogeneous complex networks which not only have node time-varying delays and coupled time-varying delays but also contain uncertain disturbance. An appropriate controller is designed such that this type of network can be synchronized within a finite time. By constructing a proper Lyapunov function and using the finite-time stability theory, the sufficient conditions for the network to achieve finite-time synchronization are given and the finite time is estimated. Finally, the conclusions obtained are extended to the case of homogeneous complex networks with time-varying delays and uncertain disturbance.
基金the National Natural Science Foundation (No.60274007) of China and the Foundation of Young Backbone Teacher of Henan Province.
文摘The robust stabilization problem for uncertain systems with time-varying delay has been discussed. A new sufficient criterion is obtained to guarantee the closed-loop system robust stabilizable. The controller gain matrix is included in a Hamiltonian matrix. The Hamiltonian matrix can be constructed by the boundedness of the uncertainties. Some examples are given to illustrate the feasibility of the criterion.
基金supported by the National Basic Research Program of China (No. 2007CB714006)the National Natural Science Foundation(No. 61074020)
文摘In this paper,the robust stability issue of switched uncertain multidelay systems resulting from actuator failures is considered.Based on the average dwell time approach,a set of suitable switching signals is designed by using the total activation time ratio between the stable subsystem and the unstable one.It is first proven that the resulting closed-loop system is robustly exponentially stable for some allowable upper bound of delays if the nominal system with zero delay is exponentially stable under these switching laws.Particularly,the maximal upper bound of delays can be obtained from the linear matrix inequalities.At last,the effectiveness of the proposed method is demonstrated by a simulation example.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61273152,61304052,51407088the Science Foundation of Education Office of Shandong Province of China under Grant Nos.ZR2011FM07,BS2015DX018
文摘Containment control of first-order multi-agent systems with uncertain topologies and communication timedelays is studied. Suppose system topologies are dynamically changed, a containment control algorithm with time-varying delays is presented. The stability of the control algorithm is studied under the assumption that communication topologies are jointly-connected, and constraint condition of distributed containment control for delayed multi-agent systems is derived with the aid of Lyapunov–Krasovskii function. Simulation results are provided to prove the correctness and effectiveness of the conclusion.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos 61403168 and 61273131the Research Innovation Program for College Graduates of Jiangsu Province(KYLX15_1194).
文摘Purpose-This paper is concerned with non-fragile robust H_(∞)control problems for nonlinear networked control systems(NCSs)with time-varying delay and unknown actuator failures.The paper aims to discuss these issues.Design/methodology/approach-The system parameters are allowed to have time-varying uncertainties and the actuator faults are unknown but whose upper and lower bounds are known.By using some lemmas,uncertainties can be replaces with the known values.By taking the exogenous disturbance and network transmission delay into consideration,a delay nonlinear system model is constructed.Findings-Based on Lyapunov stability theory,linear matrix inequalities(LMIs)and free weighting matrix methods,the sufficient conditions for the existence of the non-fragile robust H_(∞)controller gain are derived and which can obtained by solving the LMIs.Finally,a numerical example is provided to illustrate the effectiveness of the proposed methods.Originality/value-The introduced approach is interesting for NCSs with time-varying delay and unknown actuator failures.
基金Supported by the National Natural Science Foundation of China (10771001)the Key Program of Ministry of Education of China (205068)the Foundation of Innovation Team of Anhui Univ
文摘The problem of delay-dependent robust stability for uncertain linear singular neutral systems with time-varying and distributed delays is investigated. The uncertainties under consideration are norm bounded,and possibly time varying. Some new stability criteria,which are simpler and less conservative than existing results,are derived based on a new class of Lyapunov-Krasovskii functionals combined with the descriptor model transformation and the decomposition technique of coeffcient matrix and formulated in...
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0800401)the National Natural Science Foundation of China(Grant Nos.61621003,61532020 and11472290)
文摘Node dynamics and network topologies play vital roles in determining the network features and network dynamical behaviors.Thus it is of great theoretical significance and practical value to recover the topology structures and system parameters of uncertain complex networks with available information. This paper presents an adaptive anticipatory synchronization-based approach to identify the unknown system parameters and network topological structures of uncertain time-varying delayed complex networks in the presence of noise. Moreover, during the identification process, our proposed scheme guarantees anticipatory synchronization between the uncertain drive and constructed auxiliary response network simultaneously. Particularly, our method can be extended to several special cases. Furthermore, numerical simulations are provided to verify the effectiveness and applicability of our method for reconstructing network topologies and node parameters. We hope our method can provide basic insight into future research on addressing reconstruction issues of uncertain realistic and large-scale complex networks.