The aim of this work was to inhibit biofilm formation by taking advantages of bacterial surface display technology in combination with cell membrane chromatography.A recombinant protein INPAidH was constructed by fusi...The aim of this work was to inhibit biofilm formation by taking advantages of bacterial surface display technology in combination with cell membrane chromatography.A recombinant protein INPAidH was constructed by fusing a quorum signal hydrolase AidH to the C-terminus of the ice nucleation protein(INP).Expression of INP-AidH was achieved on E.coli cell surface at an expression level of 30%of total membrane proteins.Activity of INP-AidH on cell membranes was confirmed in degrading the quorum signal C6-HSL as well as inhibiting bacterial biofilm.Immobilization of INP-AidH anchored cell membranes on silica gel particles was facilitated by taking advantages of cell membrane chromatography.The functionalized silica gel particles also exhibit activities in degrading C6-HSL and inhibiting bacterial biofilm.This article presents a new approach to prevent biofilm formation of silica-based materials.展开更多
Bacterial cells rely on signaling molecules to communicate with others from the same species and induce certain genes in a process known as quorum sensing (QS). A common molecule is N-acyl homoserine lactone (AHL) whi...Bacterial cells rely on signaling molecules to communicate with others from the same species and induce certain genes in a process known as quorum sensing (QS). A common molecule is N-acyl homoserine lactone (AHL) which is responsible for the expression of virulence and other factors that allow the organisms to compete in a given environment. On the other hand, other bacteria produce certain enzymes such as AHL-lactonase that break down AHL molecules and prevent gene expression of these factors. The aim of this work was to examine the level of degradation of AHL molecules by AHL-lactonase in 62 Bacillus thuringiensis (Bt) strains isolated from Middle Tennessee, Mississippi, and Alabama. N-hexanoyl-homoserine lactone (C<sub>6</sub>-HSL) and N-3-oxo-hexanoyl homoserine lactone (3-oxo-C<sub>6</sub>-HSL), which cause Chromobacterium violaceum (CV026) to produce a purple pigment were tested at different concentrations to view the Bt lactonase activity. In addition, PCR was used to test for the presence of the lactonase gene. The results showed that among the 62 Bt strains, there were 58 that possessed the AHL-lactonase (aiiA) gene and 48 strains were able to degrade C<sub>6</sub>-HSL. At high concentrations of AHL, only 13 strains were able to completely degrade C6-HSL. In addition, degradation of 3-oxo-C<sub>6</sub>-HSL was weak compared to C<sub>6</sub>-HSL. The results also revealed that AHL lactonase was thermostable, and it was concluded that the level of degradation varies in Bt strains. Only 13 of the strains studied have potent inhibitory activity against C<sub>6</sub>-HSL, which may be good to be used in field applications to control agricultural pest.展开更多
[Objective]The relationship between signal molecule N-acety-homoserine lactones(AHLs) and Microcystis aeruginosa cell apoptosis was studied.[Method]With M.aeruginosa as the test materials treated by 5 μmol/L N-acet...[Objective]The relationship between signal molecule N-acety-homoserine lactones(AHLs) and Microcystis aeruginosa cell apoptosis was studied.[Method]With M.aeruginosa as the test materials treated by 5 μmol/L N-acety-homoserine lactones(AHLs),the morphology of cell apoptosis was observed through staining with DAPI.[Result]Microcystis aeruginosa cell apoptosis was induced by signal molecule N-acetyhomoserine lactones(AHLs) with the concentration of 1 μmol/L to inhibit the growth and proliferation of Microcystis aeruginosa.[Conclusion] The results provided the important scientific basis and new management ideas for the treatment of water bloom of Microcystis aeruginosa.展开更多
The aim of this research was to detect the N-acyl homoserine lactones (AHLs) production and QseB/C gene of Aeromonas hydrophila. We analyzed the potentials of these isolates of Aeromonas hydrophila in causing biofilm ...The aim of this research was to detect the N-acyl homoserine lactones (AHLs) production and QseB/C gene of Aeromonas hydrophila. We analyzed the potentials of these isolates of Aeromonas hydrophila in causing biofilm formation, hemolysis, protease, and lipase. The antibiotic susceptibility of the 15 Aeromonas hydrophila isolates was also investigated. The detection of AHLs was carried out using the Chromobacterium violaceum strain CV026 as biosensors. The isolated strains were tested for the reaction of C. violaceum CV026 by cross-streaking on an agar plate. Production of AHLs was determined by the diffusing via the agar plates and the tinge of the biosensor strains. All isolated strains produced AHLs. A polymerase chain reaction (PCR) showed the isolated strains had qseB and qseC genes. Susceptibility tests of A. hydrophila isolates were administered against 25 different antibiotic disks representing 12 classes of antibiotics. The strains were highly resistant to β-Lactam with 96.7% showing resistibility, whereas 97.7% susceptibility was found towards Aminoglycoside class of the antibiotic used. 60% showed intermediate resistant to Polypeptide. 100% of the strains showed no resistant to Aminoglycoside, Polypeptide, Monobactam, and Carbapenems class of antibiotics. Each of the isolates was found to be associated with at least one virulent factor. Our results clearly demonstrated that there is a presence of QseB/C genes in A. hydrophila and also produces AHLs molecule and virulence factors. The investigated isolates showed the pathogenic potential of Aeromonas hydrophila which makes it a serious threat to public health.展开更多
Cell-cell communication is critical for bacterial survival in natural habitats,in which miscellaneous regulatory networks are encompassed.However,elucidating the interaction networks of a microbial community has been ...Cell-cell communication is critical for bacterial survival in natural habitats,in which miscellaneous regulatory networks are encompassed.However,elucidating the interaction networks of a microbial community has been hindered by the population complexity.This study reveals thatγ-butyrolactone(GBL)molecules from Streptomyces species,the major antibiotic producers,can directly bind to the acyl-homoserine lactone(AHL)receptor of Chromobacterium violaceum and influence violacein production controlled by the quorum sensing(QS)system.Subsequently,the widespread responses of more Gram-negative bacterial AHL receptors to Gram-positive Streptomyces signaling molecules are unveiled.Based on the cross-talk between GBL and AHL signaling systems,combinatorial regulatory circuits(CRC)are designed and proved to be workable in Escherichia coli(E.coli).It is significant that the QS systems of Gram-positive and Gram-negative bacteria can be bridged via native Streptomyces signaling molecules.These findings pave a new path for unlocking the comprehensive cell-cell communications in microbial communities and facilitate the exploitation of innovative regulatory elements for synthetic biology.展开更多
本研究从腐败的大菱鲆中分离得到一株具有群体感应(Quorum Sensing,QS)的细菌,通过生理生化试验、16S r RNA鉴定其为嗜水气单胞菌(Ah-11),采用报告平板打孔法探究其生长阶段N-酰基高丝氨酸内酯(AHLs)活性变化以及环境因素对其分泌...本研究从腐败的大菱鲆中分离得到一株具有群体感应(Quorum Sensing,QS)的细菌,通过生理生化试验、16S r RNA鉴定其为嗜水气单胞菌(Ah-11),采用报告平板打孔法探究其生长阶段N-酰基高丝氨酸内酯(AHLs)活性变化以及环境因素对其分泌的AHLs活性的影响。结果显示,菌株Ah-11能够诱导报告菌株紫色杆菌CV026和根癌农杆菌A136产生颜色反应;菌株Ah-11在生长阶段的AHLs活性随着培养时间的增加呈现先升高后降低趋势;不同碳源的液体培养基对Ah-11分泌AHLs的影响能力由高到低为麦芽糖〉葡萄糖〉蔗糖〉果糖〉乳糖〉木糖;Ah-11在弱酸或者强碱条件下AHLs活性较低,p H=8.0时AHLs活性最大;较高浓度的氯化钠不仅会抑制Ah-11的生长,同时也抑制其AHLs的分泌,0.5~1.0 g/100 g的氯化钠质量浓度可以增强Ah-11的AHLs活性;菌株Ah-11分泌AHLs的最适温度为28℃,高温和低温都会影响其AHLs的分泌。研究证实细菌的群体密度和外界环境因素能够调控嗜水气单胞菌AHLs的分泌。展开更多
The effects of different species and concentrations’signal molecules on aerobic activated sludge system were investigated through batch experiments.Results showed that the fastest NH^(+)_(4)-N oxidization rate and th...The effects of different species and concentrations’signal molecules on aerobic activated sludge system were investigated through batch experiments.Results showed that the fastest NH^(+)_(4)-N oxidization rate and the most extracellular polymeric substances(EPS)secretion were obtained by adding 5 nmol/L N-hexanoyl-l-homoserine lactone(C_(6)-HSL)into the aerobic activated sludge.Further study investigated the correlation among N-acyl-homoserine lactones-mediated quorum sensing(AHLs-mediated QS),nutrient removal performances and microbial communities with the long-term addition of 5 nmol/L C_(6)-HSL.It was found that C_(6)-HSL-manipulation could enhance the stability and optimize the decontamination performance of aerobic granular sludge(AGS)system.Microbial compositions considerably shifted with long-term C_(6)-HSL-manipulation.Exogenous C_(6)-HSL-manipulation inhibited quorum quenching-related(QQ-related)activities and enhanced QS-related activities during the stable period.The proposed C_(6)-HSL-manipulation might be a potential technology to inhibit the growth of harmful bacteria in AGS,which could provide a theoretical foundation for the realization of more stable biological wastewater treatments.展开更多
基金Funded by the National Natural Science Foundation of China(No.31771032)。
文摘The aim of this work was to inhibit biofilm formation by taking advantages of bacterial surface display technology in combination with cell membrane chromatography.A recombinant protein INPAidH was constructed by fusing a quorum signal hydrolase AidH to the C-terminus of the ice nucleation protein(INP).Expression of INP-AidH was achieved on E.coli cell surface at an expression level of 30%of total membrane proteins.Activity of INP-AidH on cell membranes was confirmed in degrading the quorum signal C6-HSL as well as inhibiting bacterial biofilm.Immobilization of INP-AidH anchored cell membranes on silica gel particles was facilitated by taking advantages of cell membrane chromatography.The functionalized silica gel particles also exhibit activities in degrading C6-HSL and inhibiting bacterial biofilm.This article presents a new approach to prevent biofilm formation of silica-based materials.
文摘Bacterial cells rely on signaling molecules to communicate with others from the same species and induce certain genes in a process known as quorum sensing (QS). A common molecule is N-acyl homoserine lactone (AHL) which is responsible for the expression of virulence and other factors that allow the organisms to compete in a given environment. On the other hand, other bacteria produce certain enzymes such as AHL-lactonase that break down AHL molecules and prevent gene expression of these factors. The aim of this work was to examine the level of degradation of AHL molecules by AHL-lactonase in 62 Bacillus thuringiensis (Bt) strains isolated from Middle Tennessee, Mississippi, and Alabama. N-hexanoyl-homoserine lactone (C<sub>6</sub>-HSL) and N-3-oxo-hexanoyl homoserine lactone (3-oxo-C<sub>6</sub>-HSL), which cause Chromobacterium violaceum (CV026) to produce a purple pigment were tested at different concentrations to view the Bt lactonase activity. In addition, PCR was used to test for the presence of the lactonase gene. The results showed that among the 62 Bt strains, there were 58 that possessed the AHL-lactonase (aiiA) gene and 48 strains were able to degrade C<sub>6</sub>-HSL. At high concentrations of AHL, only 13 strains were able to completely degrade C6-HSL. In addition, degradation of 3-oxo-C<sub>6</sub>-HSL was weak compared to C<sub>6</sub>-HSL. The results also revealed that AHL lactonase was thermostable, and it was concluded that the level of degradation varies in Bt strains. Only 13 of the strains studied have potent inhibitory activity against C<sub>6</sub>-HSL, which may be good to be used in field applications to control agricultural pest.
基金Supported by National Natural Science Fund(30960036)Key Schoollevel Project of Kunming University(20091016)~~
文摘[Objective]The relationship between signal molecule N-acety-homoserine lactones(AHLs) and Microcystis aeruginosa cell apoptosis was studied.[Method]With M.aeruginosa as the test materials treated by 5 μmol/L N-acety-homoserine lactones(AHLs),the morphology of cell apoptosis was observed through staining with DAPI.[Result]Microcystis aeruginosa cell apoptosis was induced by signal molecule N-acetyhomoserine lactones(AHLs) with the concentration of 1 μmol/L to inhibit the growth and proliferation of Microcystis aeruginosa.[Conclusion] The results provided the important scientific basis and new management ideas for the treatment of water bloom of Microcystis aeruginosa.
文摘The aim of this research was to detect the N-acyl homoserine lactones (AHLs) production and QseB/C gene of Aeromonas hydrophila. We analyzed the potentials of these isolates of Aeromonas hydrophila in causing biofilm formation, hemolysis, protease, and lipase. The antibiotic susceptibility of the 15 Aeromonas hydrophila isolates was also investigated. The detection of AHLs was carried out using the Chromobacterium violaceum strain CV026 as biosensors. The isolated strains were tested for the reaction of C. violaceum CV026 by cross-streaking on an agar plate. Production of AHLs was determined by the diffusing via the agar plates and the tinge of the biosensor strains. All isolated strains produced AHLs. A polymerase chain reaction (PCR) showed the isolated strains had qseB and qseC genes. Susceptibility tests of A. hydrophila isolates were administered against 25 different antibiotic disks representing 12 classes of antibiotics. The strains were highly resistant to β-Lactam with 96.7% showing resistibility, whereas 97.7% susceptibility was found towards Aminoglycoside class of the antibiotic used. 60% showed intermediate resistant to Polypeptide. 100% of the strains showed no resistant to Aminoglycoside, Polypeptide, Monobactam, and Carbapenems class of antibiotics. Each of the isolates was found to be associated with at least one virulent factor. Our results clearly demonstrated that there is a presence of QseB/C genes in A. hydrophila and also produces AHLs molecule and virulence factors. The investigated isolates showed the pathogenic potential of Aeromonas hydrophila which makes it a serious threat to public health.
基金supported by the National Key Research and Development Program of China(2018YFA0901900 and 2020YFA0907700)the National Natural Science Foundation of China(31771378 and 31800029)。
文摘Cell-cell communication is critical for bacterial survival in natural habitats,in which miscellaneous regulatory networks are encompassed.However,elucidating the interaction networks of a microbial community has been hindered by the population complexity.This study reveals thatγ-butyrolactone(GBL)molecules from Streptomyces species,the major antibiotic producers,can directly bind to the acyl-homoserine lactone(AHL)receptor of Chromobacterium violaceum and influence violacein production controlled by the quorum sensing(QS)system.Subsequently,the widespread responses of more Gram-negative bacterial AHL receptors to Gram-positive Streptomyces signaling molecules are unveiled.Based on the cross-talk between GBL and AHL signaling systems,combinatorial regulatory circuits(CRC)are designed and proved to be workable in Escherichia coli(E.coli).It is significant that the QS systems of Gram-positive and Gram-negative bacteria can be bridged via native Streptomyces signaling molecules.These findings pave a new path for unlocking the comprehensive cell-cell communications in microbial communities and facilitate the exploitation of innovative regulatory elements for synthetic biology.
文摘The effects of different species and concentrations’signal molecules on aerobic activated sludge system were investigated through batch experiments.Results showed that the fastest NH^(+)_(4)-N oxidization rate and the most extracellular polymeric substances(EPS)secretion were obtained by adding 5 nmol/L N-hexanoyl-l-homoserine lactone(C_(6)-HSL)into the aerobic activated sludge.Further study investigated the correlation among N-acyl-homoserine lactones-mediated quorum sensing(AHLs-mediated QS),nutrient removal performances and microbial communities with the long-term addition of 5 nmol/L C_(6)-HSL.It was found that C_(6)-HSL-manipulation could enhance the stability and optimize the decontamination performance of aerobic granular sludge(AGS)system.Microbial compositions considerably shifted with long-term C_(6)-HSL-manipulation.Exogenous C_(6)-HSL-manipulation inhibited quorum quenching-related(QQ-related)activities and enhanced QS-related activities during the stable period.The proposed C_(6)-HSL-manipulation might be a potential technology to inhibit the growth of harmful bacteria in AGS,which could provide a theoretical foundation for the realization of more stable biological wastewater treatments.