With the rapid development of vehicular ad hoc network( VANET) technology,VANET applications such as safe driving and emergency rescue demand high position accuracy,but traditional GPS is difficult to meet new accurac...With the rapid development of vehicular ad hoc network( VANET) technology,VANET applications such as safe driving and emergency rescue demand high position accuracy,but traditional GPS is difficult to meet new accuracy requirements. To overcome this limitation,a new vehicle positioning method based on radio frequency identification( RFID) is proposed. First RFID base stations are divided into three categories using fuzzy technology,and then Chan algorithm is used to calculate three vehicles' positions,which are weighed to acquire vehicles' accurate position. This method can effectively overcome the problem that vehicle positioning accuracy is not high resulting from the factors such as ambient noise and base distribution when Chan algorithm is used. Experimental results show that the performance of the proposed method is superior to Chan algorithm and 2-step algorithm based on averaging method,which can satisfy the requirements of vehicle positioning in VANETs.展开更多
In many traditional On Demand routing algorithms in Ad hoc wireless networks, a simple flooding mechanism is used to broadcast route request (RREQ) packets when there is a need to establish a route from a source node ...In many traditional On Demand routing algorithms in Ad hoc wireless networks, a simple flooding mechanism is used to broadcast route request (RREQ) packets when there is a need to establish a route from a source node to a destination node. The broadcast of RREQ may lead to high channel contention, high packet collisions, and thus high delay to establish the routes, especially with high density networks. Ad hoc on Demand Distance Vector Routing Protocol (AODV) is one among the most effective Reactive Routing Protocols in MANETs which use simple flooding mechanism to broadcast the RREQ. It is also used in Wireless Sensor Networks (WSN) and in Vehicular Ad hoc Networks (VANET). This paper proposes a new modified AODV routing protocol EGBB-AODV where the RREQ mechanism is using a grid based broadcast (EGBB) which reduces considerably the number of rebroadcast of RREQ packets, and hence improves the performance of the routing protocol. We developed a simulation model based on NS2 simulator to measure the performance of EGBB-AODV and compare the results to the original AODV and a position-aware improved counter-based algorithm (PCB-AODV). The simulation experiments that EGBB-AODV outperforms AODV and PCB-AODV in terms of end-to-end delay, delivery ratio and power consumption, under different traffic load, and network density conditions.展开更多
Vehicular node positioning needs to be quick and precise on highway for safety considera-tion.In this paper,we present a novel and practical vehicular node positioning method which can achieve a higher accuracy and mo...Vehicular node positioning needs to be quick and precise on highway for safety considera-tion.In this paper,we present a novel and practical vehicular node positioning method which can achieve a higher accuracy and more reliability than the existing global-positioning-system-based po-sitioning solutions by making use of Doppler-shifted frequency measurements taken by vehicular node itself.This positioning method uses infrastructure nodes which are placed on the roadside every several kilometers as radiation sources to estimate the relative distances of vehicle to the infrastructure node.Through coordinate conversion,we get the absolute coordinates of vehicular node based on known absolute coordinates of infrastructure node.We also analyze the optimal distance of neighbor infra-structure nodes in order to ensure a high accuracy.In addition,simulation results demonstrate that the accuracy of our method with Extended Kalman Filtering(EKF) is superior to the method without EKF.展开更多
Node localization is commonly employed in wireless networks. For example, it is used to improve routing and enhance security. Localization algorithms can be classified as range-free or range-based. Range-based algorit...Node localization is commonly employed in wireless networks. For example, it is used to improve routing and enhance security. Localization algorithms can be classified as range-free or range-based. Range-based algorithms use location metrics such as ToA, TDoA, RSS, and AoA to estimate the distance between two nodes. Proximity sensing between nodes is typically the basis for range-free algorithms. A tradeoff exists since range-based algorithms are more accurate but also more complex. However, in applications such as target tracking, localization accuracy is very important. In this paper, we propose a new range-based algorithm which is based on the density-based outlier detection algorithm (DBOD) from data mining. It requires selection of the K-nearest neighbours (KNN). DBOD assigns density values to each point used in the location estimation. The mean of these densities is calculated and those points having a density larger than the mean are kept as candidate points. Different performance measures are used to compare our approach with the linear least squares (LLS) and weighted linear least squares based on singular value decomposition (WLS-SVD) algorithms. It is shown that the proposed algorithm performs better than these algorithms even when the anchor geometry about an unlocalized node is poor.展开更多
After presenting weaknesses of several classic routing protocols applied in vehicular ad hoc networks (VANETs) by a qualitative comparison, this paper proposes a novel self-adaptive routing protocol, named ARPP. Wit...After presenting weaknesses of several classic routing protocols applied in vehicular ad hoc networks (VANETs) by a qualitative comparison, this paper proposes a novel self-adaptive routing protocol, named ARPP. With respect to the specific characteristics of VANETs, the proposed routing protocol adopts a dynamic topology establishment and time-varying control message sending mechanism. A direction-based forwarding strategy and a specific warning solution enhance the routing performance in ARPP. Simulation results show that the ARPP protocol outperforms the classic AODV in urban vehicle environment.展开更多
基金Chinese National High Technology Research and Development Program(No.2014BAG03B03)
文摘With the rapid development of vehicular ad hoc network( VANET) technology,VANET applications such as safe driving and emergency rescue demand high position accuracy,but traditional GPS is difficult to meet new accuracy requirements. To overcome this limitation,a new vehicle positioning method based on radio frequency identification( RFID) is proposed. First RFID base stations are divided into three categories using fuzzy technology,and then Chan algorithm is used to calculate three vehicles' positions,which are weighed to acquire vehicles' accurate position. This method can effectively overcome the problem that vehicle positioning accuracy is not high resulting from the factors such as ambient noise and base distribution when Chan algorithm is used. Experimental results show that the performance of the proposed method is superior to Chan algorithm and 2-step algorithm based on averaging method,which can satisfy the requirements of vehicle positioning in VANETs.
文摘In many traditional On Demand routing algorithms in Ad hoc wireless networks, a simple flooding mechanism is used to broadcast route request (RREQ) packets when there is a need to establish a route from a source node to a destination node. The broadcast of RREQ may lead to high channel contention, high packet collisions, and thus high delay to establish the routes, especially with high density networks. Ad hoc on Demand Distance Vector Routing Protocol (AODV) is one among the most effective Reactive Routing Protocols in MANETs which use simple flooding mechanism to broadcast the RREQ. It is also used in Wireless Sensor Networks (WSN) and in Vehicular Ad hoc Networks (VANET). This paper proposes a new modified AODV routing protocol EGBB-AODV where the RREQ mechanism is using a grid based broadcast (EGBB) which reduces considerably the number of rebroadcast of RREQ packets, and hence improves the performance of the routing protocol. We developed a simulation model based on NS2 simulator to measure the performance of EGBB-AODV and compare the results to the original AODV and a position-aware improved counter-based algorithm (PCB-AODV). The simulation experiments that EGBB-AODV outperforms AODV and PCB-AODV in terms of end-to-end delay, delivery ratio and power consumption, under different traffic load, and network density conditions.
基金Supported by the National Grand Fundamental Research Program of China (973 Program, No.2007CB310606)The National High Technology Research and Development Program of China (863 Program, No.2008AA01Z205)China Postdoctoral Science Foundation funded project
文摘Vehicular node positioning needs to be quick and precise on highway for safety considera-tion.In this paper,we present a novel and practical vehicular node positioning method which can achieve a higher accuracy and more reliability than the existing global-positioning-system-based po-sitioning solutions by making use of Doppler-shifted frequency measurements taken by vehicular node itself.This positioning method uses infrastructure nodes which are placed on the roadside every several kilometers as radiation sources to estimate the relative distances of vehicle to the infrastructure node.Through coordinate conversion,we get the absolute coordinates of vehicular node based on known absolute coordinates of infrastructure node.We also analyze the optimal distance of neighbor infra-structure nodes in order to ensure a high accuracy.In addition,simulation results demonstrate that the accuracy of our method with Extended Kalman Filtering(EKF) is superior to the method without EKF.
文摘Node localization is commonly employed in wireless networks. For example, it is used to improve routing and enhance security. Localization algorithms can be classified as range-free or range-based. Range-based algorithms use location metrics such as ToA, TDoA, RSS, and AoA to estimate the distance between two nodes. Proximity sensing between nodes is typically the basis for range-free algorithms. A tradeoff exists since range-based algorithms are more accurate but also more complex. However, in applications such as target tracking, localization accuracy is very important. In this paper, we propose a new range-based algorithm which is based on the density-based outlier detection algorithm (DBOD) from data mining. It requires selection of the K-nearest neighbours (KNN). DBOD assigns density values to each point used in the location estimation. The mean of these densities is calculated and those points having a density larger than the mean are kept as candidate points. Different performance measures are used to compare our approach with the linear least squares (LLS) and weighted linear least squares based on singular value decomposition (WLS-SVD) algorithms. It is shown that the proposed algorithm performs better than these algorithms even when the anchor geometry about an unlocalized node is poor.
基金Supported by the National Natural Science Foundation of China (No.61070182, No. 60873192, No. 61170225)
文摘After presenting weaknesses of several classic routing protocols applied in vehicular ad hoc networks (VANETs) by a qualitative comparison, this paper proposes a novel self-adaptive routing protocol, named ARPP. With respect to the specific characteristics of VANETs, the proposed routing protocol adopts a dynamic topology establishment and time-varying control message sending mechanism. A direction-based forwarding strategy and a specific warning solution enhance the routing performance in ARPP. Simulation results show that the ARPP protocol outperforms the classic AODV in urban vehicle environment.