A prototype of a solar ground-layer adaptive optics (GLAO) system, which consists of a multi-direction corre- lating Shack-Hartmann wavefront sensor with 30 effective subapertures and about a 1 arcmin field of view ...A prototype of a solar ground-layer adaptive optics (GLAO) system, which consists of a multi-direction corre- lating Shack-Hartmann wavefront sensor with 30 effective subapertures and about a 1 arcmin field of view (FoV) in each subaperture, a deformable mirror with 151 actuators conjugated to the telescope entrance pupil, and a custom-built real-time controller based on field-programmable gate array and multi-core digital signal processor (DSP), is implemented at the 1 m New Vacuum Solar Telescope at Fuxian Solar Observatory and saw its first light on January 12th, 2016. The on-sky observational results show that the solar image is apparently improved in the whole FoV over 1 arcmin with the GLAO correction.展开更多
基金supported by the National Natural Science Foundation of China(No.11178004)the Laboratory Innovation Foundation of the Chinese Academy of Sciences(No.YJ15K007)
文摘A prototype of a solar ground-layer adaptive optics (GLAO) system, which consists of a multi-direction corre- lating Shack-Hartmann wavefront sensor with 30 effective subapertures and about a 1 arcmin field of view (FoV) in each subaperture, a deformable mirror with 151 actuators conjugated to the telescope entrance pupil, and a custom-built real-time controller based on field-programmable gate array and multi-core digital signal processor (DSP), is implemented at the 1 m New Vacuum Solar Telescope at Fuxian Solar Observatory and saw its first light on January 12th, 2016. The on-sky observational results show that the solar image is apparently improved in the whole FoV over 1 arcmin with the GLAO correction.