The design of a new adaptive version of the multiple dependent state(AMDS)sampling plan is presented based on the time truncated life test under the Weibull distribution.We achieved the proposed sampling plan by apply...The design of a new adaptive version of the multiple dependent state(AMDS)sampling plan is presented based on the time truncated life test under the Weibull distribution.We achieved the proposed sampling plan by applying the concept of the double sampling plan and existing multiple dependent state sampling plans.A warning sign for acceptance number was proposed to increase the probability of current lot acceptance.The optimal plan parameters were determined simultaneously with nonlinear optimization problems under the producer’s risk and consumer’s risk.A simulation study was presented to support the proposed sampling plan.A comparison between the proposed and existing sampling plans,namely multiple dependent state(MDS)sampling plans and a modified multiple dependent state(MMDS)sampling plan,was considered under the average sampling number and operating characteristic curve values.In addition,the use of two real datasets demonstrated the practicality and usefulness of the proposed sampling plan.The results indicated that the proposed plan is more flexible and efficient in terms of the average sample number compared to the existing MDS and MMDS sampling plans.展开更多
基金This research was supported by Thailand ScienceResearch and Innovation(TSRI)and Rajamangala University of Technology Thanyaburi(RMUTT)under National Science,Research and Innovation Fund(NSRF)BasicResearch Fund:Fiscal year 2022(ContractNo.FRB650070/0168 and under Project number FRB65E0634 M.3).
文摘The design of a new adaptive version of the multiple dependent state(AMDS)sampling plan is presented based on the time truncated life test under the Weibull distribution.We achieved the proposed sampling plan by applying the concept of the double sampling plan and existing multiple dependent state sampling plans.A warning sign for acceptance number was proposed to increase the probability of current lot acceptance.The optimal plan parameters were determined simultaneously with nonlinear optimization problems under the producer’s risk and consumer’s risk.A simulation study was presented to support the proposed sampling plan.A comparison between the proposed and existing sampling plans,namely multiple dependent state(MDS)sampling plans and a modified multiple dependent state(MMDS)sampling plan,was considered under the average sampling number and operating characteristic curve values.In addition,the use of two real datasets demonstrated the practicality and usefulness of the proposed sampling plan.The results indicated that the proposed plan is more flexible and efficient in terms of the average sample number compared to the existing MDS and MMDS sampling plans.