期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Novel disturbance compensating dynamic positioning of dredgers based on adaptive backstepping 被引量:1
1
作者 张宇华 姜建国 郜登科 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期36-39,共4页
In order to deal with the dynamic positioning system control problems of dredgers working under strong dredging reaction or harsh environments,an adaptive backstepping method is proposed.Disturbances are estimated and... In order to deal with the dynamic positioning system control problems of dredgers working under strong dredging reaction or harsh environments,an adaptive backstepping method is proposed.Disturbances are estimated and compensated for by the adaptive method without extra sensors on dredging equipment,and the control mechanism is simplified.Adaptive control is used to compensate for the reaction and environmental disturbances on the dredger,so the dredger can maintain the desired position with a minimum error and shock.The proposed adaptive robust controller guarantees the global asymptotic stability of the closed-loop system and rapid position tracking of the dredger.The simulation results show that the proposed controller has superior performance in position tracking and robustness to large disturbances. 展开更多
关键词 dynamic positioning(DP) adaptive backstepping nonlinear control DREDGER disturbance compensating
下载PDF
Adaptive Backstepping Slide Mode Control of Pneumatic Position Servo System 被引量:12
2
作者 REN Haipeng FAN Juntao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期1003-1009,共7页
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potentia... With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental performance, as compared with some existing methods. results show that the designed controller can achieve better tracking 展开更多
关键词 pneumatic position servo system adaptive backstepping design slide mode control uncertain parameter tracking accuracy
下载PDF
An adaptive backstepping sliding mode method for flight attitude of quadrotor UAVs 被引量:16
3
作者 JIANG Xue-ying SU Cheng-li +3 位作者 XU Ya-peng LIU Kai SHI Hui-yuan LI Ping 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期616-631,共16页
To overcome nonlinear and 6-DOF(degrees of freedom)under-actuated problems for the attitude and position of quadrotor UAVs,an adaptive backstepping sliding mode method for flight attitude of quadrotor UAVs is proposed... To overcome nonlinear and 6-DOF(degrees of freedom)under-actuated problems for the attitude and position of quadrotor UAVs,an adaptive backstepping sliding mode method for flight attitude of quadrotor UAVs is proposed,in which an adaptive law is designed to online estimate the parameter variations and the upper bound of external disturbances and the assessments is utilized to compensate the backstepping sliding mode control.In addition,the tracking error of the design method is shown to asymptotically converge to zero by using Lyapunov theory.Finally,based on the numerical simulation of quadrotor UAVs using the setting parameters,the results show that the proposed control approach can stabilize the attitude and has hover flight capabilities under the parameter perturbations and external disturbances. 展开更多
关键词 quadrotor UAVs adaptive backstepping sliding mode adaptive law tracking error
下载PDF
Adaptive Backstepping Sliding Mode Control for Nonlinear Systems with Input Saturation 被引量:5
4
作者 ZHANG Hongmei ZHANG Guoshan 《Transactions of Tianjin University》 EI CAS 2012年第1期46-51,共6页
An adaptive backstepping sliding mode control is proposed for a class of uncertain nonlinear systems with input saturation.A command filtered approach is used to prevent input saturation from destroying the adaptive c... An adaptive backstepping sliding mode control is proposed for a class of uncertain nonlinear systems with input saturation.A command filtered approach is used to prevent input saturation from destroying the adaptive capabilities of neural networks (NNs).The control law and adaptive updating laws of NNs are derived in the sense of Lyapunov function,so the stability can be guaranteed even under the input saturation.The proposed control law is robust against the disturbance,and it can also eliminate the impact of input saturation.Simulation results indicate that the proposed controller has a good performance. 展开更多
关键词 nonlinear system input saturation adaptive backstepping control sliding mode control neural network
下载PDF
A novel adaptive backstepping design of turbine main steam valve control 被引量:2
5
作者 Liying SUN,Jun ZHAO (Key Laboratory of Integrated Automation of Process Industry,Ministry of Education,and School of Information Science and Engineering,Northeastern University,Shenyang Liaoning 110004,China) 《控制理论与应用(英文版)》 EI 2010年第4期425-428,共4页
The problem of transient stability for a single machine infinite bus system with turbine main steam valve control is addressed by means of a novel adaptive backstepping method in this paper.The recursive design proced... The problem of transient stability for a single machine infinite bus system with turbine main steam valve control is addressed by means of a novel adaptive backstepping method in this paper.The recursive design procedure of the proposed controller is much simpler than that of the existing controller based on conventional adaptive backstepping method.In the system,the damping coefficient is measured inaccurately,and the reactance of transmission line also contains a few uncertainties.A nonlinear robust controller and parameter updating laws are obtained simultaneously.The system does not need to be linearized,and the closed-loop error system is guaranteed to be asymptotically stable.The design procedure and simulation results demonstrate the effectiveness of the proposed design. 展开更多
关键词 Novel adaptive backstepping Nonlinear control Parameter uncertainty Steam valve control
下载PDF
A new adaptive backstepping method for nonlinear control of turbine main steam valve 被引量:1
6
作者 Jun FU Jun ZHAO 《控制理论与应用(英文版)》 EI 2007年第1期17-22,共6页
A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classica... A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classical certaintyequivalence principle in the design of adaptive control law. We introduce this approach, for the first time, to power systems and present a novel parameter estimator and dynamic feedback controller for a single machine infinite bus (SMIB) system with steam valve control. This system contains unknown parameters such as reactance of transmission lines. Besides preserving useful nonlinearities and the real-time estimation of uncertain parameters, the proposed approach possesses better performances with respect to the response of the system and the speed of adaptation. The simulation results demonstrate that the proposed approach is better than the design based on "classical" adaptive backstepping in terms of properties of stability and parameter estimation, and recovers the performance of the "full-information" controller. Hence, the proposed method provides an alternative for engineers in applications. 展开更多
关键词 Nonlinear control adaptive backstepping Steam valve control Power systems
下载PDF
Application of Adaptive Backstepping Sliding Mode Control in Alternative Current Servo System of Rocket Launcher
7
作者 郭亚军 马大为 +1 位作者 王晓峰 乐贵高 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第3期140-144,共5页
An adaptive backstepping sliding mode control approach is introduced to control the pitch motion of a rocket launcher. Its control law is proposed to guarantee that the control system is ultimately bounded in a Lyapun... An adaptive backstepping sliding mode control approach is introduced to control the pitch motion of a rocket launcher. Its control law is proposed to guarantee that the control system is ultimately bounded in a Lyapunov sense and make the servo system track the instruction of reference position globally and asymptotically. In addition, the sliding mode control can restrain the effects of parameter uncertainties and external disturbance. The functions of adaptive mechanism and sliding mode control are analyzed through the simulation in the different conditions.The simulation results illustrate that the method is applicable and robust. 展开更多
关键词 automatic control technology rocket launcher sliding mode control adaptive backstepping permanent magnet synchronous motor
下载PDF
Adaptive Backstepping Control for Uncertain Systems with Compound Nonlinear Characteristics
8
作者 LI Fei WANG Shimei +1 位作者 HU Jianbo LIU Bingqi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第2期249-258,共10页
An adaptive backstepping multi-sliding mode approximation variable structure control scheme is proposed for a class of uncertain nonlinear systems.An actuator model with compound nonlinear characteristics is establish... An adaptive backstepping multi-sliding mode approximation variable structure control scheme is proposed for a class of uncertain nonlinear systems.An actuator model with compound nonlinear characteristics is established based on the model decomposition method.The unmodeled dynamic term of the radial basis function neural network approximation system is presented.The Nussbaum gain design technique is utilized to overcome the problem that the control gain is unknown.The adaptive law estimation is used to estimate the upper boundary of neural network approximation and uncertain interference.The adaptive approximate variable structure control effectively weakens the control signal chattering while enhancing the robustness of the controller.Based on the Lyapunov stability theory,the stability of the entire control system is proved.The main advantage of the designed controller is that the compound nonlinear characteristics are considered and solved.Finally,simulation results are given to show the validity of the control scheme. 展开更多
关键词 compound nonlinearities SATURATION HYSTERESIS adaptive backstepping control radial basis function(RBF)neural network
下载PDF
Based on Adaptive Backstepping Error Control for Permanent Magnet Synchronous Motor
9
作者 Hua Jiang Da Lin +1 位作者 Yongchun Liu Hong Song 《Intelligent Control and Automation》 2016年第2期17-24,共8页
Permanent Magnet Synchronous Motor (PMSM) displays chaotic phenomenon when PMSM in power on or power off. At present, there are many methods to control chaos in PMSM. However, there appears oscillation in course of co... Permanent Magnet Synchronous Motor (PMSM) displays chaotic phenomenon when PMSM in power on or power off. At present, there are many methods to control chaos in PMSM. However, there appears oscillation in course of control chaos in PMSM, which has an effect on practical application. This paper proposes error control based on adaptive backstepping to control chaos in PMSM;an error control item is added in each step virtual control design which has control effect of unknown dynamical error on system. This scheme can eliminate oscillation in course of control chaos. Finally, the simulation results show the effectiveness of theoretical analysis. 展开更多
关键词 PMSM Error Control adaptive backstepping Chaos Control
下载PDF
Adaptive backstepping control for levitation system with load uncertainties and external disturbances 被引量:6
10
作者 李金辉 李杰 +1 位作者 余佩倡 王连春 《Journal of Central South University》 SCIE EI CAS 2014年第12期4478-4488,共11页
To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows th... To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, load uncertainties and external disturbances are the main issues that should be solved in engineering. Under the assumptions that the loads and external disturbance are measurable, the backstepping module controller developed in this work can tackle the above problems effectively. In reality, the load is uncertain due to the additions of luggage and passengers, which will degrade the dynamic performance. A load estimation algorithm is introduced to track the actual load asymptotically and eliminate its influence by tuning the parameters of controller online. Furthermore,considering the external disturbances generated by crosswind, pulling motor and air springs, the extended state observer is employed to estimate and suppress the external disturbance. Finally, results of numerical simulations illustrating closed-loop performance are provided. 展开更多
关键词 maglev backstepping control nonlinearity mass variation adaptiveness extended state observer
下载PDF
Adaptive Fuzzy Observer Backstepping Control for a Class of Uncertain Nonlinear Systems with Unknown Time-delay 被引量:7
11
作者 Shao-Cheng Tong Ning Sheng 《International Journal of Automation and computing》 EI 2010年第2期236-246,共11页
In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonli... In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach. 展开更多
关键词 Fuzzy logic systems nonlinear time-delay systems adaptive backstepping control state observer stability analysis.
下载PDF
Adaptive Backstepping Sliding Mode Trajectory Tracking Control for a Quad-rotor 被引量:5
12
作者 Xun Gong 1 Zhi-Cheng Hou 1 Chang-Jun Zhao 2 Yue Bai 2 Yan-Tao Tian 1 1 School of Telecommunication Engineering,Jilin University,Changchun 130025,China 2 Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130080,China 《International Journal of Automation and computing》 EI 2012年第5期555-560,共6页
A quad-rotor aircraft is an under-actuated,strongly coupled nonlinear system with parameter uncertainty and un-modeled disturbance.In order to make the aircraft track the desired trajectory,a nested double-loops contr... A quad-rotor aircraft is an under-actuated,strongly coupled nonlinear system with parameter uncertainty and un-modeled disturbance.In order to make the aircraft track the desired trajectory,a nested double-loops control system is adopted in this paper.A position error proportional-derivative(PD) controller is designed as the outer-loop controller based on the coupling action between rotational and translational movement,and an adaptive backstepping sliding mode control algorithm is used to stabilize the attitude.Finally,both the numerical simulation and prototype experiment are utilized to demonstrate the effectiveness of the proposed control system. 展开更多
关键词 Quad-rotor nested double-loops coupling action adaptive backstepping sliding mode
原文传递
Adaptive backstepping control for a class of semistrict feedback nonlinear systems using neural networks 被引量:3
13
作者 Yang, Hongwei Li, Zhiping 《控制理论与应用(英文版)》 EI 2011年第2期220-224,共5页
This paper addresses a neural adaptive backstepping control with dynamic surface control technique for a class of semistrict feedback nonlinear systems with bounded external disturbances.Neural networks (NNs) are intr... This paper addresses a neural adaptive backstepping control with dynamic surface control technique for a class of semistrict feedback nonlinear systems with bounded external disturbances.Neural networks (NNs) are introduced as approximators for uncertain nonlinearities and the dynamic surface control (DSC) technique is involved to solve the so-called 'explosion of terms' problem.In addition,the NN is used to approximate the transformed unknown functions but not the original nonlinear functions to overcome the possible singularity problem.The stability of closed-loop system is proven by using Lyapunov function method,and adaptation laws of NN weights are derived from the stability analysis.Finally,a numeric simulation validates the results of theoretical analysis. 展开更多
关键词 adaptive backstepping Dynamic surface control Semistrict feedback form Radius-basis-function (RBF) networks
原文传递
A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control 被引量:2
14
作者 J P Singh V T Pham +3 位作者 T Hayat S Jafari F E Alsaadi B K Roy 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期231-239,共9页
This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. T... This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. The proposed system exhibits various dynamical behaviors including chaotic, periodic, stable nature, and coexistence of various attractors. Numerous theoretical and numerical methods are used for the analyses of this system. The chaotic behavior of the new system is validated using circuit implementation. Further, the synchronization of the proposed systems is shown by designing an adaptive integrator backstepping controller. Numerical simulation validates the synchronization strategy. 展开更多
关键词 new hyperjerk chaotic system stable equilibrium hidden attractors adaptive backstepping control SYNCHRONIZATION
下载PDF
Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation
15
作者 En Lu Zheng Ma +2 位作者 Yaoming Li Lizhang Xu Zhong Tang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第4期178-187,共10页
To ensure the stable driving of tracked robots in a complex farmland environment,an adaptive backstepping control method for tracked robots was proposed based on real-time slip parameter estimation.According to the ki... To ensure the stable driving of tracked robots in a complex farmland environment,an adaptive backstepping control method for tracked robots was proposed based on real-time slip parameter estimation.According to the kinematics analysis method,the kinematic model of the tracked robot was established,and then,its pose error differential equation was further obtained.On this basis,the trajectory tracking controller of the tracked robot was designed based on the backstepping control theory.Subsequently,according to the trajectory tracking error of the tracked robot,the back propagation neural network(BPNN)was used to adaptively adjust the control parameters in the backstepping controller,and the inputs of the BPNN are the trajectory tracking error xe,ye,θe.After that,the soft-switching sliding mode observer(SSMO)was designed to identify the slip parameters during the running of the tracked robot.And then the parameters were compensated into the adaptive backstepping controller to reduce the trajectory tracking error.The simulation results show that the proposed adaptive backstepping control method with SSMO can improve the accuracy of the trajectory tracking control of the tracked robot.Additionally,the designed SSMO can accurately estimate the slip parameters. 展开更多
关键词 tracked robot trajectory control adaptive backstepping control neural networks slip parameter sliding mode observer
原文传递
Nonlinear Pitch Control of an Underwater Glider Based on Adaptive Backstepping Approach
16
作者 曹俊亮 姚宝恒 连琏 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第6期729-734,共6页
Underwater gliders are highly efficient and long-ranged autonomous underwater vehicles. The typical dynamic modeling in the vertical plane is of multi-input multi-output(MIMO), which is underactuated while easily affe... Underwater gliders are highly efficient and long-ranged autonomous underwater vehicles. The typical dynamic modeling in the vertical plane is of multi-input multi-output(MIMO), which is underactuated while easily affected by the ambient environment. To resolve the problems of MIMO, the dynamic model is transformed into a single-input single-output(SISO) system with two dubious parameters, and an adaptive backstepping controller is designed and applied in this paper. A Lyapunov function has been established with the total energy of the system converged in the controller. Contrast result of simulation has demonstrated that the derived nonlinear controller has higher tracking precision and faster response than the proportional-integral-derivative(PID) control method,which indicates its excellent capability to deal with the controlling problems of underwater gliders. 展开更多
关键词 underwater glider nonlinear control adaptive backstepping Lyapunov function
原文传递
Backstepping adaptive control of hydraulic Stewart platform using dynamic surface
17
作者 唐建林 袁立鹏 赵克定 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期106-110,共5页
Hydraulic Stewart platform is characterized by nonlinearity for driving system in essence,severe load coupling among the legs,which bring a great difficulty for controller design and performance improvement.Afore cont... Hydraulic Stewart platform is characterized by nonlinearity for driving system in essence,severe load coupling among the legs,which bring a great difficulty for controller design and performance improvement.Afore controller research is either low in tracking performance and movement smoothness when it ignores the nonlinearity and dynamics coupling,or complex in algorithm and has the need of acceleration feedback or observer when the dynamics coupling and nonlinearity is included.To solve the dilemma,a new controller,backstepping adaptive control of hydraulic Stewart platform using dynamic surface is put forward based on the complete dynamics including the upper platform dynamics and hydraulic nonlinearity in driving system.Asymptotic stability of the whole system is proved by Lyapunov method.The proposed algorithm is simple by avoiding the use of acceleration.The simulation results indicate that the control algorithm performs better than the normal PID controller in control precision,dynamic response and depression of the cross coupling. 展开更多
关键词 hydraulic Stewart platform dynamics coupling dynamic surface backstepping adaptive control asymptotic stability
下载PDF
Backstepping Adaptive Controller of Electro-Hydraulic Servo System of Continuous Rotary Motor
18
作者 Xiao-Jing Wang Chang-Fu Xian +3 位作者 Cao-Lei Wan Jin-Bao Zhao Li-Wei Xiu An-Cai Yu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第3期111-116,共6页
In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance,the design method of backstepping adaptive controller is put forward.The mathematic... In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance,the design method of backstepping adaptive controller is put forward.The mathematical model of electro-hydraulic servo system of continuous rotary motor is established,and the whole system is decomposed into several lower order subsystems,and the virtual control signal is designed for each subsystem from the final subsystem with motor angular displacement to the subsystem with system control input voltage. Based on Lyapunov method and the backstepping theory,an adaptive backstepping controller is designed with the changed parameters adaptive law. It is proved that the system reaches the global asymptotic stability,and the system tracking error asymptotically tends to zero. The simulation results show that the backstepping adaptive controller based on the adaptive law of the changed parameters can improve the performance of continuous rotary motor,and the proposed control strategy is feasible. 展开更多
关键词 continuous rotary motor low speed performance backstepping adaptive control
下载PDF
Vibration Control of A Flexible Marine Riser System Subject to Input Dead Zone and Extraneous Disturbances 被引量:1
19
作者 ZHOU Li WANG Guo-rong WAN Min 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期271-284,共14页
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control... An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller. 展开更多
关键词 adaptive backstepping control disturbance observer flexible marine riser input dead zone vibration control
下载PDF
Adaptive robust dissipative designs on straight path control for underactuated ships 被引量:3
20
作者 Li Tieshan Yang Yansheng Hong Biguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期177-181,共5页
An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm... An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm is developed by using the dissipation theory, such that the resulting dosed-loop system is both strictly dissipative and asymptotically adaptively stable for all admissible uncertainties. Also, it is able to steer an underactuated ship along a prescribed straight path with ultimate bounds under external disturbances induced by wave, wind and ocean current. When there are no disturbances, the straight path control can be implemented in a locally asymptotically stable manner. Simulation results on an ocean-going training ship ‘YULONG' are presented to validate the effectiveness of the algorithm. 展开更多
关键词 underactuated ship straight path control nonlinear system adaptive backstepping design robust control.
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部