期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An Improved Whale Optimization Algorithm for Feature Selection 被引量:4
1
作者 Wenyan Guo Ting Liu +1 位作者 Fang Dai Peng Xu 《Computers, Materials & Continua》 SCIE EI 2020年第1期337-354,共18页
Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in term... Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space. 展开更多
关键词 Whale optimization algorithm Filter and Wrapper model k-nearest neighbor method adaptive neighborhood hybrid mutation
下载PDF
RFID技术的定位改进算法在铁路隧道人员定位中的应用 被引量:25
2
作者 王瑞峰 马学霞 王彦快 《铁道学报》 EI CAS CSCD 北大核心 2012年第10期68-71,共4页
本文介绍无线射频识别技术(RFID)的基本原理,重点阐述基于RFID的LANDMARC定位算法的原理与过程。在此基础上,综合考虑铁路隧道内折射、反射、多径效应等因素对场强的影响,分析LANDMARC定位算法的不足,将此算法进行改进,提出自适应LANDMA... 本文介绍无线射频识别技术(RFID)的基本原理,重点阐述基于RFID的LANDMARC定位算法的原理与过程。在此基础上,综合考虑铁路隧道内折射、反射、多径效应等因素对场强的影响,分析LANDMARC定位算法的不足,将此算法进行改进,提出自适应LANDMARC k-邻居算法,结合RF Code公司的硬件系统,将其应用到铁路隧道人员定位系统中。实验证明改进的算法具有更高的定位精度:定位精度在1m以内的标签占70%,比原来算法的60%提高10%;93%的标签定位误差小于1.5m,且最大误差控制在2.5m以内。对提高隧道内人员的安全管理水平具有重要意义。 展开更多
关键词 RFID 隧道人员定位 自适应landmarc k-邻居算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部