期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
ASTFA-BSS方法及其在齿轮箱复合故障诊断中的应用 被引量:5
1
作者 杨宇 何知义 +1 位作者 李紫珠 程军圣 《中国机械工程》 EI CAS CSCD 北大核心 2015年第15期2051-2055,2061,共6页
自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分... 自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分离方法并应用于齿轮箱复合故障诊断中。该方法首先利用ASTFA将单通道源信号进行分解,然后利用占优特征值法进行源数估计,根据源数重组观测信号,最后对观测信号进行盲源分离得到源信号的估计。实验结果表明,该方法可以有效地对齿轮箱复合故障信号进行分离进而实现齿轮箱的复合故障诊断。 展开更多
关键词 自适应最稀疏时频分析 盲源分离 齿轮箱 复合故障诊断
下载PDF
基于ASTFA的广义解调方法及应用 被引量:1
2
作者 李宝庆 程军圣 +1 位作者 彭延峰 杨宇 《中国机械工程》 EI CAS CSCD 北大核心 2015年第19期2564-2570,共7页
结合自适应最稀疏时频分析(ASTFA)和广义解调的优点提出了基于ASTFA的广义解调方法。该方法首先采用ASTFA对原始信号进行分解,得到分量信号及其相位函数;然后,提取该相位函数的二次项及高次项,获得解调相位函数;之后利用解调相位函数对... 结合自适应最稀疏时频分析(ASTFA)和广义解调的优点提出了基于ASTFA的广义解调方法。该方法首先采用ASTFA对原始信号进行分解,得到分量信号及其相位函数;然后,提取该相位函数的二次项及高次项,获得解调相位函数;之后利用解调相位函数对分量信号进行广义解调;最后对广义解调后的信号进行频域分析,提取特征信息。仿真和实验分析结果表明,基于ASTFA的广义解调方法非常适用于处理多分量频率调制信号,能够有效提取滚动轴承在变速工况下的故障特征信息。 展开更多
关键词 自适应最稀疏时频分析 广义解调 相位函数 频率调制 滚动轴承
下载PDF
基于ASTFA降噪和AKVPMCD的滚动轴承故障诊断方法 被引量:4
3
作者 杨宇 李紫珠 +1 位作者 何知义 程军圣 《中国机械工程》 EI CAS CSCD 北大核心 2015年第21期2934-2940,共7页
提出了一种滚动轴承故障诊断的新方法。首次将自适应最稀疏时频分析(ASTFA)方法应用于振动信号的降噪,并针对KVPMCD方法只选择一种最佳相关模型而忽略其他几种相关模型对预测精度贡献的缺陷,提出了一种改进的KVPMCD模式识别算法——人... 提出了一种滚动轴承故障诊断的新方法。首次将自适应最稀疏时频分析(ASTFA)方法应用于振动信号的降噪,并针对KVPMCD方法只选择一种最佳相关模型而忽略其他几种相关模型对预测精度贡献的缺陷,提出了一种改进的KVPMCD模式识别算法——人工鱼群算法优化融合Kriging模型的基于变量预测模型的模式识别(AKVPMCD)算法,即采用收敛速度快、鲁棒性强、具有全局寻优能力的人工鱼群智能算法(AFSIA)优化融合多种Kriging相关模型来提高模型预测精度。在此基础上,提出了一种基于ASTFA降噪和AKVPMCD算法的滚动轴承故障诊断方法。实验结果表明,该方法可以有效提高分类识别的精度。 展开更多
关键词 自适应最稀疏时频分析降噪 AKVPMCD 滚动轴承 故障诊断
下载PDF
GS-ASTFA方法及其在滚动轴承寿命预测中的应用 被引量:8
4
作者 欧龙辉 彭晓燕 +1 位作者 杨宇 程军圣 《振动与冲击》 EI CSCD 北大核心 2017年第11期14-19,共6页
自适应最稀疏时频分析(Adaptive and Sparsest Time-Frequency Analysis,ASTFA)方法是一种新的信号分解方法,该方法将信号分解问题转化为优化问题,以得到信号的最稀疏解。优化过程采用高斯-牛顿迭代算法,但高斯-牛顿迭代算法对初值依赖... 自适应最稀疏时频分析(Adaptive and Sparsest Time-Frequency Analysis,ASTFA)方法是一种新的信号分解方法,该方法将信号分解问题转化为优化问题,以得到信号的最稀疏解。优化过程采用高斯-牛顿迭代算法,但高斯-牛顿迭代算法对初值依赖性高,采用黄金分割法(Golden Section,GS)对ASTFA方法进行初值搜索,提出了基于黄金分割搜索初值的ASTFA方法(GS-ASTFA),仿真信号的分析结果验证了改进方法的有效性。继而采用该方法提取了滚动轴承故障特征值,并成功地进行了故障特征值趋势分析和寿命预测。 展开更多
关键词 自适应最稀疏时频分析 黄金分割法 趋势分析 寿命预测
下载PDF
基于GA的自适应最稀疏时频分析方法及应用 被引量:4
5
作者 李宝庆 程军圣 +1 位作者 吴占涛 彭延峰 《中国机械工程》 EI CAS CSCD 北大核心 2016年第1期66-72,共7页
为解决自适应最稀疏时频分析(ASTFA)方法中初始相位函数的选择问题,采用遗传算法(GA)对ASTFA的初始相位函数进行优化,提出了GA-ASTFA方法。进一步研究了GA-ASTFA方法抑制模态混淆的能力,分析结果表明,GA-ASTFA能较好地抑制模态混淆,分... 为解决自适应最稀疏时频分析(ASTFA)方法中初始相位函数的选择问题,采用遗传算法(GA)对ASTFA的初始相位函数进行优化,提出了GA-ASTFA方法。进一步研究了GA-ASTFA方法抑制模态混淆的能力,分析结果表明,GA-ASTFA能较好地抑制模态混淆,分解得到的分量信号精度高,且可抑制分解中的伪分量。最后将GA-ASTFA方法用于转子碰摩故障诊断,实验分析结果表明,GA-ASTFA方法能有效提取转子碰摩故障特征信息。 展开更多
关键词 遗传算法 自适应最稀疏时频分析 经验模态分解 模态混淆 转子碰摩
下载PDF
基于蛾火优化的自适应最稀疏时频分析方法及应用 被引量:1
6
作者 程正阳 王荣吉 +1 位作者 杨兴凯 程军圣 《噪声与振动控制》 CSCD 2019年第5期185-190,共6页
自适应最稀疏时频分析(Adaptive and sparsest time-frequency analysis,ASTFA)方法能对复杂信号进行自适 应的分解,但是初始相位函数和带宽参数取值需要人工经验,如果选择不当会严重影响ASTFA方法的分解能力。针对 该问题,论文将蛾火优... 自适应最稀疏时频分析(Adaptive and sparsest time-frequency analysis,ASTFA)方法能对复杂信号进行自适 应的分解,但是初始相位函数和带宽参数取值需要人工经验,如果选择不当会严重影响ASTFA方法的分解能力。针对 该问题,论文将蛾火优化(Moth-FlameOptimization,MFO)算法应用于ASTFA方法的初始相位函数和带宽参数的优化, 提出基于蛾火优化的自适应最稀疏时频分析(Moth-flame optimization based adaptive sparsest time-frequency analysis, MFO-ASTFA)方法。将MFO-ASTFA与ASTFA方法进行了对比,并将MFO-ASTFA方法应用于齿轮故障诊断,结果表 明了MFO-ASTFA的优越性及有效性。 展开更多
关键词 故障诊断 自适应最稀疏时频分析 蛾火优化算法 齿轮
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部