Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreg...Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background.展开更多
针对单帧复杂背景红外图像点目标检测算法存在复杂背景下处理效果不理想、处理时间长的问题,提出了一种层次卷积滤波检测算法。主要分为两个部分:第一,根据红外小目标特性,设计一种层次卷积滤波的算子,对图像进行滤波处理,实现图像中小...针对单帧复杂背景红外图像点目标检测算法存在复杂背景下处理效果不理想、处理时间长的问题,提出了一种层次卷积滤波检测算法。主要分为两个部分:第一,根据红外小目标特性,设计一种层次卷积滤波的算子,对图像进行滤波处理,实现图像中小目标的增效和背景抑制的效果;第二,采用基于最大值的自适应阈值方法,对图像进行二值化操作,过滤背景杂波,最终提取到待检测的目标。在大量不同背景红外图像中进行实验,论文算法在背景抑制因子和信噪比增益的性能量化结果上优于现有5种典型红外弱小目标检测算法的性能结果,且平均处理时间仅为高斯拉普拉斯(Laplacian of Gaussian,LoG)滤波算法的30.42%。通过实验对比,表明该层次卷积滤波算法可以有效解决在不同复杂背景下的红外图像中对小目标检测的问题。展开更多
基金Project(61701060)supported by the National Natural Science Foundation of China。
文摘Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background.
文摘针对单帧复杂背景红外图像点目标检测算法存在复杂背景下处理效果不理想、处理时间长的问题,提出了一种层次卷积滤波检测算法。主要分为两个部分:第一,根据红外小目标特性,设计一种层次卷积滤波的算子,对图像进行滤波处理,实现图像中小目标的增效和背景抑制的效果;第二,采用基于最大值的自适应阈值方法,对图像进行二值化操作,过滤背景杂波,最终提取到待检测的目标。在大量不同背景红外图像中进行实验,论文算法在背景抑制因子和信噪比增益的性能量化结果上优于现有5种典型红外弱小目标检测算法的性能结果,且平均处理时间仅为高斯拉普拉斯(Laplacian of Gaussian,LoG)滤波算法的30.42%。通过实验对比,表明该层次卷积滤波算法可以有效解决在不同复杂背景下的红外图像中对小目标检测的问题。