Fractional order algorithms have shown promising results in various signal processing applications due to their ability to improve performance without significantly increasing complexity.The goal of this work is to in...Fractional order algorithms have shown promising results in various signal processing applications due to their ability to improve performance without significantly increasing complexity.The goal of this work is to inves-tigate the use of fractional order algorithm in the field of adaptive beam-forming,with a focus on improving performance while keeping complexity lower.The effectiveness of the algorithm will be studied and evaluated in this context.In this paper,a fractional order least mean square(FLMS)algorithm is proposed for adaptive beamforming in wireless applications for effective utilization of resources.This algorithm aims to improve upon existing beam-forming algorithms,which are inefficient in performance,by offering faster convergence,better accuracy,and comparable computational complexity.The FLMS algorithm uses fractional order gradient in addition to the standard ordered gradient in weight adaptation.The derivation of the algorithm is provided and supported by mathematical convergence analysis.Performance is evaluated through simulations using mean square error(MSE)minimization as a metric and compared with the standard LMS algorithm for various parameters.The results,obtained through Matlab simulations,show that the FLMS algorithm outperforms the standard LMS in terms of convergence speed,beampattern accuracy and scatter plots.FLMS outperforms LMS in terms of convergence speed by 34%.From this,it can be concluded that FLMS is a better candidate for adaptive beamforming and other signal processing applications.展开更多
A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then con...A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.展开更多
Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the high...Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the highest algebraic precision in the interpolation-type quadrature is proposed to reduce the complexity.The interference angular sector in RAB is regarded as the GLQ integral range,and the zeros of the threeorder Legendre orthogonal polynomial is selected as the GLQ nodes.Consequently,the CMR can be efficiently obtained by simple summation with respect to the three GLQ nodes without integral.The new method has significantly reduced the complexity as compared to most state-of-the-art reconstruction-based RAB techniques,and it is able to provide the similar performance close to the optimal.These advantages are verified by numerical simulations.展开更多
The ultrafast active cavitation imaging(UACI)based on plane wave transmission and delay-and-sum(DAS)beamforming has been developed to monitor cavitation events with a high frame rate.However,DAS beamforming leads to i...The ultrafast active cavitation imaging(UACI)based on plane wave transmission and delay-and-sum(DAS)beamforming has been developed to monitor cavitation events with a high frame rate.However,DAS beamforming leads to images with limited resolution and contrast.In this paper,minimum variance(M V)adaptive beamforming and coherence factor(CF)weighting are combined to achieve an MVCF-based UACI,which can improve the cavitation imaging quality.The detailed algorithm evaluation has been investigated from both simulation and experimental data The simulation data include10point targets and a cyst,while the experimental data are obtained by detecting the dissipation of cavitation bubbles in water excited by a single element transducer with frequency of1.2MHz.The advantages of the proposed methodology as well as the comparison with conventional B-mode,DAS?M V,DAS-CF and MV on the basis of compressive sensing(CS)(called MVCS)beamformers are discussed.The results show that MVCF beamformer has a significant improvement in terms of both resolutions and signal-to-noise ratio(SN R).The MVCF-based UACI has a SNR at21.82dB higher,lateral and axial resolution at2.69times and1.93times?respectively,which were compared with those of B-mode active cavitation mapping.The MVCF-based UACI can be used to image the residual cavitation bubbles with a higher SNR and better spatial resolution展开更多
A novel approach of unitarily interpolated array MVDR (UIA-MVDR) is proposed, aiming at avoiding the signal cancellation caused by broadband signal-correlated interferences. UIA-MVDR belongs to the classic approache...A novel approach of unitarily interpolated array MVDR (UIA-MVDR) is proposed, aiming at avoiding the signal cancellation caused by broadband signal-correlated interferences. UIA-MVDR belongs to the classic approaches of spectral averaging. However, it is distinguished from the conventional interpolated array MVDR (IA-MVDR) by two points: 1) It imposes a unitary constraint on the transform matrices. 2) It only optimizes the worst-case performance of array manifold approximation. As a result, the restriction on the order of Bessel function expansion is released, so that very accurate approximation can be achieved even in the case of small or middle arrays. Compared with many related approaches, UIA-MVDR destroys the correlation more completely and then achieves better performance. Its excellent performance in both correlated and uncorrelated broadband interferences suppression is confirmed via a n umber of numerical examples.展开更多
Adaptive antenna arrays have been used to mitigate the interference on global navigation satellite system(GNSS) receivers. The performance of interference mitigation depends on the beamforming algorithms adopted by ...Adaptive antenna arrays have been used to mitigate the interference on global navigation satellite system(GNSS) receivers. The performance of interference mitigation depends on the beamforming algorithms adopted by the antenna array. However,the adaptive beamforming will change the array pattern in realtime, which has the potential to introduce phase center biases into the antenna array. For precise applications, these phase biases must be mitigated or compensated because they will bring errors in code phase and carrier phase measurements. A novel adaptive beamforming algorithm is proposed firstly, then the phase bias induced by the proposed algorithm is estimated, and finally a compensation strategy is addressed. Simulations demonstrate that the proposed beamforming algorithm suppresses effectively the strong interference and improves significantly the capturing performance of GNSS signals. Simultaneously, the bias compensation method avoids the loss of the carrier phase lock and reduces the phase measurement errors for GNSS receivers.展开更多
It is required in the diagonally loaded robust adaptive beamforming the automatic determination of the loading level which is practically a challenging problem.A constant modulus restoral method is herein presented to...It is required in the diagonally loaded robust adaptive beamforming the automatic determination of the loading level which is practically a challenging problem.A constant modulus restoral method is herein presented to choose the diagonal loading level adaptively for the extraction of a desired signal with constant modulus(a common feature of the phase modulation signals).By introducing the temporal smoothing technique,the proposed constant modulus restoral diagonally loaded robust adaptive beamformer provides increased capability compared with some existing robust adaptive beamformers in rejecting interferences and noise while protecting the signal-of-interest.Simulation results are included to illustrate the performance of the proposed beamformer.展开更多
An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packe...An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packet theory to adaptive beamforming, a wavelet packet transform-based adaptive beamforming algorithm (WP-ABF) is proposed . This WP-ABF algorithm uses wavelet packet transform as the preprocessing, and the wavelet packet transformed signal uses least mean square algorithm to implement the ~adaptive beamforming. White noise can be wiped off under wavelet packet transform according to the different characteristics of signal and white under the wavelet packet transform. Theoretical analysis and simulations demonstrate that the proposed WP-ABF algorithm converges faster than the conventional adaptive beamforming algorithm and the wavelet transform-based beamforming algorithm. Simulation results also reveal that the convergence of the algorithm relates closely to the wavelet base and series; that is, the algorithm convergence gets better with the increasing of series, and for the same series of wavelet base the convergence gets better with the increasing of regularity.展开更多
Blind adaptive beamforming is getting appreciated for its various applications in contemporary communication systems where sources are statistically dependent or independent that are allowed to formulate new algorithm...Blind adaptive beamforming is getting appreciated for its various applications in contemporary communication systems where sources are statistically dependent or independent that are allowed to formulate new algorithms. Qualitative performance and time complexity are the main issues. In this paper, we propose a technique for constant modulus signals applying basic non-negative matrix factorization (BNMF) in blind adaptive beamforming environment. We compared the existing Unscented Kalman Filter based Constant Modulus Algorithm (UKF-CMA) with proposed NMF-UKF-CMA algorithm. We see there is a better improvement of sensor array gain, signal to interference plus noise ratio (SINR) and mean squared deviation (MSD) as the noise variance and the array size increase with reduced computational complexity with the UKF-CMA.展开更多
In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training s...In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.展开更多
Aiming at the multi-antenna communication systems, a downlink transmit scheme combining adaptive beamforming (ABF) with space-time block coding (STBC) is first presented, which utilizes the maximization of the out...Aiming at the multi-antenna communication systems, a downlink transmit scheme combining adaptive beamforming (ABF) with space-time block coding (STBC) is first presented, which utilizes the maximization of the output mean signal-to-noise ratio (SNR) and the minimization of the symbol error rate (SER) upper bound of the three widely used modulations as the design criteria. Then, based on the moment generating function (MGF) and the Gauss-Chebyshev integration, a simple and accurate numerical method is presented to analyze the SER performance of the system with the new transmit scheme under the three commonly used modulations. Finally, computer simulation results demonstrate the effectiveness and superiority of the proposed strategy.展开更多
Consider the problems of frequency-invariant beampattern optimization and robustness in broadband beamforming.Firstly,a global optimization algorithm,which is based on phase compensation of the array manifolds,is used...Consider the problems of frequency-invariant beampattern optimization and robustness in broadband beamforming.Firstly,a global optimization algorithm,which is based on phase compensation of the array manifolds,is used to construct the frequency-invariant beampattern.Compared with some methods presented recently,the proposed algorithm is not only available to get the global optimal solution,but also simple for physical realization.Meanwhile,a robust adaptive broadband beamforming algorithm is also derived by reconstructing the covariance matrix.The essence of the proposed algorithm is to estimate the space-frequency spectrum using Capon estimator firstly,then integrate over a region separated from the desired signal direction to reconstruct the interference-plus-noise covariance matrix,and finally caleulate the adaptive beamformer weights with the reconstructed matrix.The design of beamformer is formulated as a convex optimization problem to be solved.Simulation results show that the performance of the proposed algorithm is almost always close to the optimal value across a wide range of signal to noise ratios.展开更多
An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVD...An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVDR), the proposed algorithm jointly updates a transforming matrix and a reduced-rank filter. Each column of the transforming matrix is treated as an independent direction vector and updates the weight values of each dimension within a subspace. In addition, the direction vector rotation improves the performance of the algorithm by reducing the uncertainties due to the direction error. Simulation results show that the RJIO-DA algorithm has lower complexity and faster convergence than other conventional reduced-rank algorithms.展开更多
The performance of adaptive array beamform-ing algorithms substantially degrades in practice because of a slight mismatch between actual and presumed array res-ponses to the desired signal.A novel robust adaptive beam...The performance of adaptive array beamform-ing algorithms substantially degrades in practice because of a slight mismatch between actual and presumed array res-ponses to the desired signal.A novel robust adaptive beam-forming algorithm based on Bayesian approach is therefore proposed.The algorithm responds to the current envi-ronment by estimating the direction of arrival(DOA)of the actual signal from observations.Computational com-plexity of the proposed algorithm can thus be reduced com-pared with other algorithms since the recursive method is used to obtain inverse matrix.In addition,it has strong robustness to the uncertainty of actual signal DOA and makes the mean output array signal-to-interference-plus-noise ratio(SINR)consistently approach the optimum.Simulation results show that the proposed algorithm is bet-ter in performance than conventional adaptive beamform-ing algorithms.展开更多
For a large-scale adaptive array, the heavy computational load and the high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. An efficient parallel digital beam...For a large-scale adaptive array, the heavy computational load and the high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. An efficient parallel digital beamforming (DBF) algorithm based on the least mean square algorithm (PLMS) is proposed. An appropriate method is found to partition the least mean square (LMS) algorithm into a number of operational modules, which can be easily executed in a distributed-parallel-processing fashion. As a result, the proposed PLMS algorithm provides an effective solution that can alleviate the bottleneck of high-rate data transmission and reduce the computational cost. PLMS requires less computational load than that of the conventional parallel algorithms based on the recursive least square (RLS) algorithm, as well as it is easier to be implemented to do real time adaptive array processing. Moreover, low sidelobe of the beam pattern is obtained by constraining the static steering vector with Tschebyscheff coefficients. Finally, a scheme of the PLMS algorithm using distributed-parallel-processing system is also proposed. The simulation results demonstrate that the PLMS algorithm has the same interference cancellation performance as that of the conventional LMS algorithm. Moreover, the PLMS algorithm can obtain the same good beamforming performance, regardless how the algorithm is partitioned. It is expected that the proposed algorithm will be used in a large-scale adaptive array system to deal with real time adaptive digital beamforming processing.展开更多
Only in the presence of sidelobe jamming (SLJ), can the conventional adaptive monopulse technique null the jamming effectively and maintain the monopulse angle estimation accuracy simultaneously. While mainlobe jamm...Only in the presence of sidelobe jamming (SLJ), can the conventional adaptive monopulse technique null the jamming effectively and maintain the monopulse angle estimation accuracy simultaneously. While mainlobe jamming (MLJ) exists, the mainlobe of adaptive pattern will subject to serious distortion, which results in a failure of detecting and tracking targets by monopulse technique. Therefore, a monopulse angle estimation algorithm based on combining sum-difference beam and auxiliary beam is presented. This algorithm utilizes both high gain difference beams and high gain auxiliary beams for cancelling the mainlobe jammer and multiple sidelobe jammers (SLJs) while keeping an adap- tive monopulse ratio. Theoretical analysis and simulation results indicate that the serious invalidation of monopulse technique in MLJ and SLJs scenarios is resolved well, which improves the monopulse angle accuracy greatly. Furthermore, the proposed algorithm is of simple implementation and low computational complexity.展开更多
Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional p...Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional power spectra(FrFT moment) of the linear chirp signal.This method can adaptively determine the optimum FrFT order by maximizing the second-order central FrFT moment.This makes the desired chirp signal substantially concentrated whereas the noise is rejected considerably.This improves the mean square error minimization beamformer by reducing effectively the signal-noise cross terms due to the finite data length de-correlation operation.Simulation results show that the new method works well under a wide range of signal to noise ratio and signal to interference ratio.展开更多
The problem addressed in this paper concerns the extension of widely linear beamforming to the wideband case,developing a wide-focused linear beamformer for the extraction of a wideband second-order(SO)noncircular sig...The problem addressed in this paper concerns the extension of widely linear beamforming to the wideband case,developing a wide-focused linear beamformer for the extraction of a wideband second-order(SO)noncircular signal-of-interest(SOI)contaminated by uncorrelated interferences and noise.In the proposed beamformer,the beamforming array observation is first focused to adopt a standard linear minimum variance distortionless response(MVDR)framework.The augmented SOI steering vector then is obtained by estimating the SOI noncircularity parameter with the newly proposed oblique projection with an augmented sparse representation scheme.The covariance matrix of the virtual interference,true interference and noise is further reconstructed using the newly presented complementary spatial spectrum technique.The wideband widely linear spatial filtering is finally realized via MVDR like beamforming.The performance of the proposed beamformer is verified by simulation.展开更多
A bearnforming algorithm is introduced based on the general objective function that approximates the bit error rate for the wireless systems with binary phase shift keying and quadrature phase shift keying modulation ...A bearnforming algorithm is introduced based on the general objective function that approximates the bit error rate for the wireless systems with binary phase shift keying and quadrature phase shift keying modulation schemes. The proposed minimum approximate bit error rate (ABER) beamforming approach does not rely on the Gaussian assumption of the channel noise. Therefore, this approach is also applicable when the channel noise is non-Gaussian. The simulation results show that the proposed minimum ABER solution improves the standard minimum mean squares error beamforming solution, in terms of a smaller achievable system's bit error rate.展开更多
The performance the quaternion-Capon( Q-Capon) beamformer degraded when suppressing the interferences that are coherent with the signal of interest( SOI). To tackle the problem,the spatial smoothing technique is a...The performance the quaternion-Capon( Q-Capon) beamformer degraded when suppressing the interferences that are coherent with the signal of interest( SOI). To tackle the problem,the spatial smoothing technique is adopted in quaternion domain to decorrelate the interferences by using linearly and uniformly spaced two-component electromagnetic vector-sensors. By averaging several translational invariant subarray quaternion covariance matrices,the quaternion spatial smoothing is performed to prevent the SOI cancellation phenomena caused by the presence of coherent interferences. It is demonstrated that the quaternion spatial smoothing Q-Capon beamformer can suppress the coherent interferences remarkably while the computational cost is lower than the complex domain long vector spatial smoothing counterpart. Theoretical analyses and simulation results validate the efficacy of the spatially smoothed Q-Capon beamformer in terms of coherent interference suppression capability.展开更多
基金supported by the Office of Research and Innovation(IRG project#23207)at Alfaisal University,Riyadh,KSA.
文摘Fractional order algorithms have shown promising results in various signal processing applications due to their ability to improve performance without significantly increasing complexity.The goal of this work is to inves-tigate the use of fractional order algorithm in the field of adaptive beam-forming,with a focus on improving performance while keeping complexity lower.The effectiveness of the algorithm will be studied and evaluated in this context.In this paper,a fractional order least mean square(FLMS)algorithm is proposed for adaptive beamforming in wireless applications for effective utilization of resources.This algorithm aims to improve upon existing beam-forming algorithms,which are inefficient in performance,by offering faster convergence,better accuracy,and comparable computational complexity.The FLMS algorithm uses fractional order gradient in addition to the standard ordered gradient in weight adaptation.The derivation of the algorithm is provided and supported by mathematical convergence analysis.Performance is evaluated through simulations using mean square error(MSE)minimization as a metric and compared with the standard LMS algorithm for various parameters.The results,obtained through Matlab simulations,show that the FLMS algorithm outperforms the standard LMS in terms of convergence speed,beampattern accuracy and scatter plots.FLMS outperforms LMS in terms of convergence speed by 34%.From this,it can be concluded that FLMS is a better candidate for adaptive beamforming and other signal processing applications.
文摘A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.
基金supported by the National Natural Science Foundation of China(618711496197115962071144)。
文摘Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the highest algebraic precision in the interpolation-type quadrature is proposed to reduce the complexity.The interference angular sector in RAB is regarded as the GLQ integral range,and the zeros of the threeorder Legendre orthogonal polynomial is selected as the GLQ nodes.Consequently,the CMR can be efficiently obtained by simple summation with respect to the three GLQ nodes without integral.The new method has significantly reduced the complexity as compared to most state-of-the-art reconstruction-based RAB techniques,and it is able to provide the similar performance close to the optimal.These advantages are verified by numerical simulations.
基金National Natural Science Foundation of China(No.11604305)Key Research and Development Projects from Ministry of Science and Technology of the People’s Republic of China(No.2016YFC0101605)
文摘The ultrafast active cavitation imaging(UACI)based on plane wave transmission and delay-and-sum(DAS)beamforming has been developed to monitor cavitation events with a high frame rate.However,DAS beamforming leads to images with limited resolution and contrast.In this paper,minimum variance(M V)adaptive beamforming and coherence factor(CF)weighting are combined to achieve an MVCF-based UACI,which can improve the cavitation imaging quality.The detailed algorithm evaluation has been investigated from both simulation and experimental data The simulation data include10point targets and a cyst,while the experimental data are obtained by detecting the dissipation of cavitation bubbles in water excited by a single element transducer with frequency of1.2MHz.The advantages of the proposed methodology as well as the comparison with conventional B-mode,DAS?M V,DAS-CF and MV on the basis of compressive sensing(CS)(called MVCS)beamformers are discussed.The results show that MVCF beamformer has a significant improvement in terms of both resolutions and signal-to-noise ratio(SN R).The MVCF-based UACI has a SNR at21.82dB higher,lateral and axial resolution at2.69times and1.93times?respectively,which were compared with those of B-mode active cavitation mapping.The MVCF-based UACI can be used to image the residual cavitation bubbles with a higher SNR and better spatial resolution
基金This work was supported by the Science and Technology Foundation of Sichuan Province under Grand No. 04GG21-020-02.
文摘A novel approach of unitarily interpolated array MVDR (UIA-MVDR) is proposed, aiming at avoiding the signal cancellation caused by broadband signal-correlated interferences. UIA-MVDR belongs to the classic approaches of spectral averaging. However, it is distinguished from the conventional interpolated array MVDR (IA-MVDR) by two points: 1) It imposes a unitary constraint on the transform matrices. 2) It only optimizes the worst-case performance of array manifold approximation. As a result, the restriction on the order of Bessel function expansion is released, so that very accurate approximation can be achieved even in the case of small or middle arrays. Compared with many related approaches, UIA-MVDR destroys the correlation more completely and then achieves better performance. Its excellent performance in both correlated and uncorrelated broadband interferences suppression is confirmed via a n umber of numerical examples.
基金supported by the National Natural Science Foundation of China(61301094)the Postdoctoral Science Foundation of China(2014M552490)
文摘Adaptive antenna arrays have been used to mitigate the interference on global navigation satellite system(GNSS) receivers. The performance of interference mitigation depends on the beamforming algorithms adopted by the antenna array. However,the adaptive beamforming will change the array pattern in realtime, which has the potential to introduce phase center biases into the antenna array. For precise applications, these phase biases must be mitigated or compensated because they will bring errors in code phase and carrier phase measurements. A novel adaptive beamforming algorithm is proposed firstly, then the phase bias induced by the proposed algorithm is estimated, and finally a compensation strategy is addressed. Simulations demonstrate that the proposed beamforming algorithm suppresses effectively the strong interference and improves significantly the capturing performance of GNSS signals. Simultaneously, the bias compensation method avoids the loss of the carrier phase lock and reduces the phase measurement errors for GNSS receivers.
基金Supported by the National Natural Science Foundation of China(No.61490691,61331019)
文摘It is required in the diagonally loaded robust adaptive beamforming the automatic determination of the loading level which is practically a challenging problem.A constant modulus restoral method is herein presented to choose the diagonal loading level adaptively for the extraction of a desired signal with constant modulus(a common feature of the phase modulation signals).By introducing the temporal smoothing technique,the proposed constant modulus restoral diagonally loaded robust adaptive beamformer provides increased capability compared with some existing robust adaptive beamformers in rejecting interferences and noise while protecting the signal-of-interest.Simulation results are included to illustrate the performance of the proposed beamformer.
文摘An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packet theory to adaptive beamforming, a wavelet packet transform-based adaptive beamforming algorithm (WP-ABF) is proposed . This WP-ABF algorithm uses wavelet packet transform as the preprocessing, and the wavelet packet transformed signal uses least mean square algorithm to implement the ~adaptive beamforming. White noise can be wiped off under wavelet packet transform according to the different characteristics of signal and white under the wavelet packet transform. Theoretical analysis and simulations demonstrate that the proposed WP-ABF algorithm converges faster than the conventional adaptive beamforming algorithm and the wavelet transform-based beamforming algorithm. Simulation results also reveal that the convergence of the algorithm relates closely to the wavelet base and series; that is, the algorithm convergence gets better with the increasing of series, and for the same series of wavelet base the convergence gets better with the increasing of regularity.
文摘Blind adaptive beamforming is getting appreciated for its various applications in contemporary communication systems where sources are statistically dependent or independent that are allowed to formulate new algorithms. Qualitative performance and time complexity are the main issues. In this paper, we propose a technique for constant modulus signals applying basic non-negative matrix factorization (BNMF) in blind adaptive beamforming environment. We compared the existing Unscented Kalman Filter based Constant Modulus Algorithm (UKF-CMA) with proposed NMF-UKF-CMA algorithm. We see there is a better improvement of sensor array gain, signal to interference plus noise ratio (SINR) and mean squared deviation (MSD) as the noise variance and the array size increase with reduced computational complexity with the UKF-CMA.
基金supported by the National Natural Science Foundation of China(62371049)。
文摘In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.
基金the National Natural Science Foundation of China (Grant Nos. 60672093 and 60496310)the National Basic Research Program of China (Grant No. 2007CB310603)+1 种基金the National High Technology Project of China (Grant No. 2007AA01Z262)Huawei University Foundation
文摘Aiming at the multi-antenna communication systems, a downlink transmit scheme combining adaptive beamforming (ABF) with space-time block coding (STBC) is first presented, which utilizes the maximization of the output mean signal-to-noise ratio (SNR) and the minimization of the symbol error rate (SER) upper bound of the three widely used modulations as the design criteria. Then, based on the moment generating function (MGF) and the Gauss-Chebyshev integration, a simple and accurate numerical method is presented to analyze the SER performance of the system with the new transmit scheme under the three commonly used modulations. Finally, computer simulation results demonstrate the effectiveness and superiority of the proposed strategy.
基金supported by the National Natural Science Foundation of China(51279043,61201411)the Fundamental Research Funds for the Central Universities(HEUCF120502)the National Key Laboratory on Underwater Acoustic Technology Foundation of China(9140C200203110C2001)
文摘Consider the problems of frequency-invariant beampattern optimization and robustness in broadband beamforming.Firstly,a global optimization algorithm,which is based on phase compensation of the array manifolds,is used to construct the frequency-invariant beampattern.Compared with some methods presented recently,the proposed algorithm is not only available to get the global optimal solution,but also simple for physical realization.Meanwhile,a robust adaptive broadband beamforming algorithm is also derived by reconstructing the covariance matrix.The essence of the proposed algorithm is to estimate the space-frequency spectrum using Capon estimator firstly,then integrate over a region separated from the desired signal direction to reconstruct the interference-plus-noise covariance matrix,and finally caleulate the adaptive beamformer weights with the reconstructed matrix.The design of beamformer is formulated as a convex optimization problem to be solved.Simulation results show that the performance of the proposed algorithm is almost always close to the optimal value across a wide range of signal to noise ratios.
基金supported by the National Science&Technology Pillar Program(2013BAF07B03)Zhejiang Provincial Natural Science Foundation of China(LY13F010009)
文摘An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVDR), the proposed algorithm jointly updates a transforming matrix and a reduced-rank filter. Each column of the transforming matrix is treated as an independent direction vector and updates the weight values of each dimension within a subspace. In addition, the direction vector rotation improves the performance of the algorithm by reducing the uncertainties due to the direction error. Simulation results show that the RJIO-DA algorithm has lower complexity and faster convergence than other conventional reduced-rank algorithms.
基金was supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20050145019)Directive Plan of Science Research from the Bureau of Education of Hebei Province(No.Z 2004103).
文摘The performance of adaptive array beamform-ing algorithms substantially degrades in practice because of a slight mismatch between actual and presumed array res-ponses to the desired signal.A novel robust adaptive beam-forming algorithm based on Bayesian approach is therefore proposed.The algorithm responds to the current envi-ronment by estimating the direction of arrival(DOA)of the actual signal from observations.Computational com-plexity of the proposed algorithm can thus be reduced com-pared with other algorithms since the recursive method is used to obtain inverse matrix.In addition,it has strong robustness to the uncertainty of actual signal DOA and makes the mean output array signal-to-interference-plus-noise ratio(SINR)consistently approach the optimum.Simulation results show that the proposed algorithm is bet-ter in performance than conventional adaptive beamform-ing algorithms.
文摘For a large-scale adaptive array, the heavy computational load and the high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. An efficient parallel digital beamforming (DBF) algorithm based on the least mean square algorithm (PLMS) is proposed. An appropriate method is found to partition the least mean square (LMS) algorithm into a number of operational modules, which can be easily executed in a distributed-parallel-processing fashion. As a result, the proposed PLMS algorithm provides an effective solution that can alleviate the bottleneck of high-rate data transmission and reduce the computational cost. PLMS requires less computational load than that of the conventional parallel algorithms based on the recursive least square (RLS) algorithm, as well as it is easier to be implemented to do real time adaptive array processing. Moreover, low sidelobe of the beam pattern is obtained by constraining the static steering vector with Tschebyscheff coefficients. Finally, a scheme of the PLMS algorithm using distributed-parallel-processing system is also proposed. The simulation results demonstrate that the PLMS algorithm has the same interference cancellation performance as that of the conventional LMS algorithm. Moreover, the PLMS algorithm can obtain the same good beamforming performance, regardless how the algorithm is partitioned. It is expected that the proposed algorithm will be used in a large-scale adaptive array system to deal with real time adaptive digital beamforming processing.
基金supported by the National Natural Science Foundation of China(60925005)
文摘Only in the presence of sidelobe jamming (SLJ), can the conventional adaptive monopulse technique null the jamming effectively and maintain the monopulse angle estimation accuracy simultaneously. While mainlobe jamming (MLJ) exists, the mainlobe of adaptive pattern will subject to serious distortion, which results in a failure of detecting and tracking targets by monopulse technique. Therefore, a monopulse angle estimation algorithm based on combining sum-difference beam and auxiliary beam is presented. This algorithm utilizes both high gain difference beams and high gain auxiliary beams for cancelling the mainlobe jammer and multiple sidelobe jammers (SLJs) while keeping an adap- tive monopulse ratio. Theoretical analysis and simulation results indicate that the serious invalidation of monopulse technique in MLJ and SLJs scenarios is resolved well, which improves the monopulse angle accuracy greatly. Furthermore, the proposed algorithm is of simple implementation and low computational complexity.
基金supported by the National Natural Science Foundation of China (606720846060203760736006)
文摘Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional power spectra(FrFT moment) of the linear chirp signal.This method can adaptively determine the optimum FrFT order by maximizing the second-order central FrFT moment.This makes the desired chirp signal substantially concentrated whereas the noise is rejected considerably.This improves the mean square error minimization beamformer by reducing effectively the signal-noise cross terms due to the finite data length de-correlation operation.Simulation results show that the new method works well under a wide range of signal to noise ratio and signal to interference ratio.
基金National Natural Science Foundation of China(61331019,61490691)。
文摘The problem addressed in this paper concerns the extension of widely linear beamforming to the wideband case,developing a wide-focused linear beamformer for the extraction of a wideband second-order(SO)noncircular signal-of-interest(SOI)contaminated by uncorrelated interferences and noise.In the proposed beamformer,the beamforming array observation is first focused to adopt a standard linear minimum variance distortionless response(MVDR)framework.The augmented SOI steering vector then is obtained by estimating the SOI noncircularity parameter with the newly proposed oblique projection with an augmented sparse representation scheme.The covariance matrix of the virtual interference,true interference and noise is further reconstructed using the newly presented complementary spatial spectrum technique.The wideband widely linear spatial filtering is finally realized via MVDR like beamforming.The performance of the proposed beamformer is verified by simulation.
文摘A bearnforming algorithm is introduced based on the general objective function that approximates the bit error rate for the wireless systems with binary phase shift keying and quadrature phase shift keying modulation schemes. The proposed minimum approximate bit error rate (ABER) beamforming approach does not rely on the Gaussian assumption of the channel noise. Therefore, this approach is also applicable when the channel noise is non-Gaussian. The simulation results show that the proposed minimum ABER solution improves the standard minimum mean squares error beamforming solution, in terms of a smaller achievable system's bit error rate.
基金Supported by the National Natural Science Foundation of China(61331019)
文摘The performance the quaternion-Capon( Q-Capon) beamformer degraded when suppressing the interferences that are coherent with the signal of interest( SOI). To tackle the problem,the spatial smoothing technique is adopted in quaternion domain to decorrelate the interferences by using linearly and uniformly spaced two-component electromagnetic vector-sensors. By averaging several translational invariant subarray quaternion covariance matrices,the quaternion spatial smoothing is performed to prevent the SOI cancellation phenomena caused by the presence of coherent interferences. It is demonstrated that the quaternion spatial smoothing Q-Capon beamformer can suppress the coherent interferences remarkably while the computational cost is lower than the complex domain long vector spatial smoothing counterpart. Theoretical analyses and simulation results validate the efficacy of the spatially smoothed Q-Capon beamformer in terms of coherent interference suppression capability.