An adaptive bit loading and power-allocation scheme is proposed in order to augment the performance of the system based on orthogonal frequency division multiplexing (OFDM), which is based on the maximum power margi...An adaptive bit loading and power-allocation scheme is proposed in order to augment the performance of the system based on orthogonal frequency division multiplexing (OFDM), which is based on the maximum power margin. Coinciding with the adaptive loading scheme, a semi-blind channel estimation algorithm using subspace decomposition method is proposed, which uses the information in the cyclic prefix. An initial channel state information is estimated by using the training sequences with the method of interpolation filtering. The proposed adaptive scheme is simulated on an OFDM wireless local area network(WLAN) system in a time-varying channel. The performance is compared to the constant loading scheme.展开更多
For OFDM systems with hundreds or thousands subcarriers with the adaptive bit and power loading according to each subcarrier , the signaling overhead will be awfully large. However, the adaptive bit and power loading ...For OFDM systems with hundreds or thousands subcarriers with the adaptive bit and power loading according to each subcarrier , the signaling overhead will be awfully large. However, the adaptive bit and power loading according to “subband” is an effective solution to this problem, with which the signaling overhead is expected to be dramatically decreased at the cost of some performance loss. In this paper, based on Ref . [5] but with some modification to the subband bit and power loading algorithm, we apply the algorithm to the IEEE 802.16e OFDM system. The results show that the modified subband bit and power loading algorithm can achieve better BER performance and the signaling overhead is reduced by 75% at the cost of performance loss less than 1 dB if the number of subcarriers per subband is 4 when the BER is around 10^-3.展开更多
文摘An adaptive bit loading and power-allocation scheme is proposed in order to augment the performance of the system based on orthogonal frequency division multiplexing (OFDM), which is based on the maximum power margin. Coinciding with the adaptive loading scheme, a semi-blind channel estimation algorithm using subspace decomposition method is proposed, which uses the information in the cyclic prefix. An initial channel state information is estimated by using the training sequences with the method of interpolation filtering. The proposed adaptive scheme is simulated on an OFDM wireless local area network(WLAN) system in a time-varying channel. The performance is compared to the constant loading scheme.
文摘For OFDM systems with hundreds or thousands subcarriers with the adaptive bit and power loading according to each subcarrier , the signaling overhead will be awfully large. However, the adaptive bit and power loading according to “subband” is an effective solution to this problem, with which the signaling overhead is expected to be dramatically decreased at the cost of some performance loss. In this paper, based on Ref . [5] but with some modification to the subband bit and power loading algorithm, we apply the algorithm to the IEEE 802.16e OFDM system. The results show that the modified subband bit and power loading algorithm can achieve better BER performance and the signaling overhead is reduced by 75% at the cost of performance loss less than 1 dB if the number of subcarriers per subband is 4 when the BER is around 10^-3.