In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To ...In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.展开更多
The tracking of orientation and angular velocity is a primary attitude control task for an on-orbit spacecraft.The problem for a rigid spacecraft tracking a desired angular velocity profile is addressed using an adapt...The tracking of orientation and angular velocity is a primary attitude control task for an on-orbit spacecraft.The problem for a rigid spacecraft tracking a desired angular velocity profile is addressed using an adaptive feedback control.An angular velocity feedback tracking algorithm is firstly developed based on the precisely known attitude dynamics of the spacecraft,and the global tracking of the control algorithm is proved based on the Lyapunov analysis.An adaptation mechanism is then designed to deal with the dynamic uncertainties of the spacecraft.Such an adaptation mechanism enables the controller to track any desired angular velocity trajectories even in the presence of uncertain inertia parameters,although it does not guarantee the inertia tensor being precisely identified.To verify the effectiveness of the proposed adaptive control policy,computer simulations on dynamic equations of a spacecraft are conducted and their results are discussed.展开更多
For Lightweight body,sound radiation and sound insulation performance have negative effects on interior noise by the deterioration of local stiffness and modality.So the research on the active control of vibration and...For Lightweight body,sound radiation and sound insulation performance have negative effects on interior noise by the deterioration of local stiffness and modality.So the research on the active control of vibration and noise for car body panels is useful for engineering.Analysis and active control of booming noise in car is researched by using a new active damping vibration reduction technology named smart constrained layer damping(SCLD).According to the vibration characters of body roof,an optimal placement of actuators is distributed.Based on dSPACE hardware in loop environment,an adaptive active control system is designed.Selecting vibration signals of engine mounting point as the reference input of adaptive controller,an active control experiment of booming noise for mini-car is carried out.Experimental results show that,when the engine speed is at 3700 RPM and4250RPM,the interior booming noise decreases 4.2dB(A),and 3.5dB(A) separately.It proposes new methods and techniques for intelligent control of car body NVH in the future.展开更多
Wind energy systems (WESs) based on doubly-fed induction generators (DFIGs) have enormous potential for meeting the future demands related to clean energy. Due to the low inertia and intermittency of power injection, ...Wind energy systems (WESs) based on doubly-fed induction generators (DFIGs) have enormous potential for meeting the future demands related to clean energy. Due to the low inertia and intermittency of power injection, a WES is equipped with a virtual inertial controller (VIC) to support the system during a frequency deviation event. The frequency deviation measured by a phase locked loop (PLL) installed on a point of common coupling (PCC) bus is the input signal to the VIC. However, a VIC with an improper inertial gain could deteriorate the damping of the power system, which may lead to instability. To address this issue, a mathematical formulation for calculating the synchronizing and damping torque coefficients of a WES-integrated single-machine infinite bus (SMIB) system while considering PLL and VIC dynamics is proposed in this paper. In addition, a power system stabilizer (PSS) is designed for wind energy integrated power systems to enhance electromechanical oscillation damping. A small-signal stability assessment is performed using the infinite bus connected to a synchronous generator of higher-order dynamics integrated with a VIC-equipped WES. Finally, the performance and robustness of the proposed PSS is demonstrated through time-domain simulation in SMIB and nine-bus test systems integrated with WES under several case studies.展开更多
The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission ...The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission delays. The paper uses an LMI-based iterative nonlinear optimization algorithm to establish a method of designing state-feedback controllers for power systems with a time-varying delay. This method is based on the delay-dependent stabilization conditions obtained by the improved free weighting matrix (IFWM) approach. In the stabilization conditions, the upper bound of feedback signal’s transmission delays is taken into consideration. Combining theoriesof state feedback control and state observer, the ASC is designed and time-delay output feedback robust controller is realized for power system. The ASC uses the input information from Phase Measurement Units (PMUs) in the system and dispatches supplementary control signals to the available local controllers. The design of the ASC is explained in detail and its performance validated by time domain simulations on a New England test power system (NETPS).展开更多
This paper discusses causes of the rate ripple in inertia guidance test equipment IGET, systematically analyses their effects an the rate ripple in IGTE. The analysis result shows: The rate ripple caused by the perio...This paper discusses causes of the rate ripple in inertia guidance test equipment IGET, systematically analyses their effects an the rate ripple in IGTE. The analysis result shows: The rate ripple caused by the periodic errors of inductosyn and angular encoder is higher at high speed than that caused by magnetic ripple torque and friction torque, and it cannot be eliminated by adjusting control parameters of the system. And based on the nonlinear adaptive control system theory, the paper puts forward a new control system scheme to eliminate the rate ripple caused by the periodic errors of inductosyn and angular encoder, develops the adaptive control rules and makes simulation and test. Experimental result shows a significant improvement on those tables for the period disturbs under the system scheme designed. By this plan, with the input of rate 200°/s, the rate ripple falls from 5°/s to 0. 4°/s within about 6s adaptive adjustment time, being a twelfth of before adaptation, which can not be reached by common classical controls. The experimental results conform with the simulation, which proves the validity and practicability of the plan.展开更多
Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures. In the present study, a new semi-active damping system using variable amplification will be investigated f...Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures. In the present study, a new semi-active damping system using variable amplification will be investigated for adaptive baseisolation. It uses a novel variable amplification device (VAD) connected in series with a passive damper. The VAD is capable of producing multiple amplification factors, each corresponding to a different amplification state. Forces from the damper are amplified to the structure according to the current amplification state, which is selected via a semi-active control algorithm specifically tailored to the system's tmique damping characteristics. To demonstrate the effectiveness of the VAD-damper system for adaptive base-isolation, numerical simulations are conducted for three and seven-story base-isolated buildings subject to both far and near-field ground motions. The results indicate that the system can achieve significant reductions in response compared to the base-isolated buildings with no damper. The proposed system is also found to perform well compared to a typical semi-active damper.展开更多
The purpose is to design the control method for a single-degree-of-freedom(SDOF)exponentially damped oscillator.Based on the Lyapunov stability theory,sliding mode control and adaptive sliding mode control have been p...The purpose is to design the control method for a single-degree-of-freedom(SDOF)exponentially damped oscillator.Based on the Lyapunov stability theory,sliding mode control and adaptive sliding mode control have been proposed.Sliding control laws and adaptive sliding laws are designed for exponentially damped oscillator respectively in cases that the bound of the external exciting force is known or unknown.The viability and effectiveness of the above control designs have been validated by numerical simulations.展开更多
An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is w...An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.展开更多
若风电机组参与调频时采用步进惯量控制(stepwise inertial control,SIC)策略,其退出调频时有功快速下降可能会引发系统频率二次跌落(frequency second drop,FSD)问题。已有文献中一类改进的SIC策略通过减小风电机组退出调频后有功下降...若风电机组参与调频时采用步进惯量控制(stepwise inertial control,SIC)策略,其退出调频时有功快速下降可能会引发系统频率二次跌落(frequency second drop,FSD)问题。已有文献中一类改进的SIC策略通过减小风电机组退出调频后有功下降阶段的斜率来应对FSD问题,然而该类改进的SIC策略使得风电机组在退出调频后其有功需要一段时间才会小于风能捕获,在此期间转子转速会继续下降并有可能低于转速下限,危及风电机组运行安全。文章对这一类改进的SIC策略做了进一步完善,提出了一种风电机组自适应SIC策略,根据风电机组退出调频时的转子转速自适应设置风电机组退出调频后有功下降阶段的斜率,在确保风电机组退出调频后转子转速不会低于转速下限的前提下,最小化FSD的幅度。展开更多
The virtual inertia and virtual damping affect both the dynamic stability of the virtual synchronous generator(VSG)and the configuration of energy storage,but there is a conflict between them while selecting the virtu...The virtual inertia and virtual damping affect both the dynamic stability of the virtual synchronous generator(VSG)and the configuration of energy storage,but there is a conflict between them while selecting the virtual inertia and virtual damping.An optimal coordination control strategy of micro-grid inverter and energy storage based on variable virtual inertia and damping is proposed to mitigate this conflict.With the integrated optimal constraint of the VSG frequency variation and the energy storage capacity,the virtual inertia and damping of VSG are configured dynamically,adopting linear quadratic optimal control.It can suppress the oscillations of the active power and frequency to improve the stability of VSG and optimally configure the energy storage capacity of VSG simultaneously.The proposed strategy aims to improve the control performance of micro-grid inverter and the system economy.The simulation and experimental results verify the effectiveness of the strategy.展开更多
基金funded by the National Natural Science Foundation of China(52067013),and the Provincial Natural Science Foundation of Gansu(20JR5RA395).
文摘In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.
基金Supported by the Innovation Fund of Shanghai Aerospace Science and Technology(SAST 201308)
文摘The tracking of orientation and angular velocity is a primary attitude control task for an on-orbit spacecraft.The problem for a rigid spacecraft tracking a desired angular velocity profile is addressed using an adaptive feedback control.An angular velocity feedback tracking algorithm is firstly developed based on the precisely known attitude dynamics of the spacecraft,and the global tracking of the control algorithm is proved based on the Lyapunov analysis.An adaptation mechanism is then designed to deal with the dynamic uncertainties of the spacecraft.Such an adaptation mechanism enables the controller to track any desired angular velocity trajectories even in the presence of uncertain inertia parameters,although it does not guarantee the inertia tensor being precisely identified.To verify the effectiveness of the proposed adaptive control policy,computer simulations on dynamic equations of a spacecraft are conducted and their results are discussed.
基金Supported by the State Key Development Program for Basic Research of China(No.2010CB736104)the National High Technology Research and Development Program of China(No.2012AA111803)
文摘For Lightweight body,sound radiation and sound insulation performance have negative effects on interior noise by the deterioration of local stiffness and modality.So the research on the active control of vibration and noise for car body panels is useful for engineering.Analysis and active control of booming noise in car is researched by using a new active damping vibration reduction technology named smart constrained layer damping(SCLD).According to the vibration characters of body roof,an optimal placement of actuators is distributed.Based on dSPACE hardware in loop environment,an adaptive active control system is designed.Selecting vibration signals of engine mounting point as the reference input of adaptive controller,an active control experiment of booming noise for mini-car is carried out.Experimental results show that,when the engine speed is at 3700 RPM and4250RPM,the interior booming noise decreases 4.2dB(A),and 3.5dB(A) separately.It proposes new methods and techniques for intelligent control of car body NVH in the future.
文摘Wind energy systems (WESs) based on doubly-fed induction generators (DFIGs) have enormous potential for meeting the future demands related to clean energy. Due to the low inertia and intermittency of power injection, a WES is equipped with a virtual inertial controller (VIC) to support the system during a frequency deviation event. The frequency deviation measured by a phase locked loop (PLL) installed on a point of common coupling (PCC) bus is the input signal to the VIC. However, a VIC with an improper inertial gain could deteriorate the damping of the power system, which may lead to instability. To address this issue, a mathematical formulation for calculating the synchronizing and damping torque coefficients of a WES-integrated single-machine infinite bus (SMIB) system while considering PLL and VIC dynamics is proposed in this paper. In addition, a power system stabilizer (PSS) is designed for wind energy integrated power systems to enhance electromechanical oscillation damping. A small-signal stability assessment is performed using the infinite bus connected to a synchronous generator of higher-order dynamics integrated with a VIC-equipped WES. Finally, the performance and robustness of the proposed PSS is demonstrated through time-domain simulation in SMIB and nine-bus test systems integrated with WES under several case studies.
文摘The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission delays. The paper uses an LMI-based iterative nonlinear optimization algorithm to establish a method of designing state-feedback controllers for power systems with a time-varying delay. This method is based on the delay-dependent stabilization conditions obtained by the improved free weighting matrix (IFWM) approach. In the stabilization conditions, the upper bound of feedback signal’s transmission delays is taken into consideration. Combining theoriesof state feedback control and state observer, the ASC is designed and time-delay output feedback robust controller is realized for power system. The ASC uses the input information from Phase Measurement Units (PMUs) in the system and dispatches supplementary control signals to the available local controllers. The design of the ASC is explained in detail and its performance validated by time domain simulations on a New England test power system (NETPS).
文摘This paper discusses causes of the rate ripple in inertia guidance test equipment IGET, systematically analyses their effects an the rate ripple in IGTE. The analysis result shows: The rate ripple caused by the periodic errors of inductosyn and angular encoder is higher at high speed than that caused by magnetic ripple torque and friction torque, and it cannot be eliminated by adjusting control parameters of the system. And based on the nonlinear adaptive control system theory, the paper puts forward a new control system scheme to eliminate the rate ripple caused by the periodic errors of inductosyn and angular encoder, develops the adaptive control rules and makes simulation and test. Experimental result shows a significant improvement on those tables for the period disturbs under the system scheme designed. By this plan, with the input of rate 200°/s, the rate ripple falls from 5°/s to 0. 4°/s within about 6s adaptive adjustment time, being a twelfth of before adaptation, which can not be reached by common classical controls. The experimental results conform with the simulation, which proves the validity and practicability of the plan.
文摘Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures. In the present study, a new semi-active damping system using variable amplification will be investigated for adaptive baseisolation. It uses a novel variable amplification device (VAD) connected in series with a passive damper. The VAD is capable of producing multiple amplification factors, each corresponding to a different amplification state. Forces from the damper are amplified to the structure according to the current amplification state, which is selected via a semi-active control algorithm specifically tailored to the system's tmique damping characteristics. To demonstrate the effectiveness of the VAD-damper system for adaptive base-isolation, numerical simulations are conducted for three and seven-story base-isolated buildings subject to both far and near-field ground motions. The results indicate that the system can achieve significant reductions in response compared to the base-isolated buildings with no damper. The proposed system is also found to perform well compared to a typical semi-active damper.
基金National Natural Science Foundation of China(No.11802338)
文摘The purpose is to design the control method for a single-degree-of-freedom(SDOF)exponentially damped oscillator.Based on the Lyapunov stability theory,sliding mode control and adaptive sliding mode control have been proposed.Sliding control laws and adaptive sliding laws are designed for exponentially damped oscillator respectively in cases that the bound of the external exciting force is known or unknown.The viability and effectiveness of the above control designs have been validated by numerical simulations.
文摘An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.
文摘若风电机组参与调频时采用步进惯量控制(stepwise inertial control,SIC)策略,其退出调频时有功快速下降可能会引发系统频率二次跌落(frequency second drop,FSD)问题。已有文献中一类改进的SIC策略通过减小风电机组退出调频后有功下降阶段的斜率来应对FSD问题,然而该类改进的SIC策略使得风电机组在退出调频后其有功需要一段时间才会小于风能捕获,在此期间转子转速会继续下降并有可能低于转速下限,危及风电机组运行安全。文章对这一类改进的SIC策略做了进一步完善,提出了一种风电机组自适应SIC策略,根据风电机组退出调频时的转子转速自适应设置风电机组退出调频后有功下降阶段的斜率,在确保风电机组退出调频后转子转速不会低于转速下限的前提下,最小化FSD的幅度。
基金Supported by National Key R&D Program of China(2016YFB0900300)National Natural Science Foundation of China(51677049).
文摘The virtual inertia and virtual damping affect both the dynamic stability of the virtual synchronous generator(VSG)and the configuration of energy storage,but there is a conflict between them while selecting the virtual inertia and virtual damping.An optimal coordination control strategy of micro-grid inverter and energy storage based on variable virtual inertia and damping is proposed to mitigate this conflict.With the integrated optimal constraint of the VSG frequency variation and the energy storage capacity,the virtual inertia and damping of VSG are configured dynamically,adopting linear quadratic optimal control.It can suppress the oscillations of the active power and frequency to improve the stability of VSG and optimally configure the energy storage capacity of VSG simultaneously.The proposed strategy aims to improve the control performance of micro-grid inverter and the system economy.The simulation and experimental results verify the effectiveness of the strategy.