This is the second part of our series works on failure-informed adaptive sampling for physic-informed neural networks(PINNs).In our previous work(SIAM J.Sci.Comput.45:A1971–A1994),we have presented an adaptive sampli...This is the second part of our series works on failure-informed adaptive sampling for physic-informed neural networks(PINNs).In our previous work(SIAM J.Sci.Comput.45:A1971–A1994),we have presented an adaptive sampling framework by using the failure probability as the posterior error indicator,where the truncated Gaussian model has been adopted for estimating the indicator.Here,we present two extensions of that work.The first extension consists in combining with a re-sampling technique,so that the new algorithm can maintain a constant training size.This is achieved through a cosine-annealing,which gradually transforms the sampling of collocation points from uniform to adaptive via the training progress.The second extension is to present the subset simulation(SS)algorithm as the posterior model(instead of the truncated Gaussian model)for estimating the error indicator,which can more effectively estimate the failure probability and generate new effective training points in the failure region.We investigate the performance of the new approach using several challenging problems,and numerical experiments demonstrate a significant improvement over the original algorithm.展开更多
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative ad...Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach.展开更多
A novel approach is proposed for improving adaptive feedback cancellation using a variable step-size affine projection algorithm(VSS-APA) based on global speech absence probability(GSAP).The variable step-size of the ...A novel approach is proposed for improving adaptive feedback cancellation using a variable step-size affine projection algorithm(VSS-APA) based on global speech absence probability(GSAP).The variable step-size of the proposed VSS-APA is adjusted according to the GSAP of the current frame.The weight vector of the adaptive filter is updated by the probability of the speech absence.The performance measure of acoustic feedback cancellation is evaluated using normalized misalignment.Experimental results demonstrate that the proposed approach has better performance than the normalized least mean square(NLMS) and the constant step-size affine projection algorithms.展开更多
There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fi...There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search.展开更多
Autonomous intelligence plays a significant role in aviation security.Since most aviation accidents occur in the take-off and landing stage,accurate tracking of moving object in airport apron will be a vital approach ...Autonomous intelligence plays a significant role in aviation security.Since most aviation accidents occur in the take-off and landing stage,accurate tracking of moving object in airport apron will be a vital approach to ensure the operation of the aircraft safely.In this study,an adaptive object tracking method based on a discriminant is proposed in multi-camera panorama surveillance of large-scale airport apron.Firstly,based on channels of color histogram,the pre-estimated object probability map is employed to reduce searching computation,and the optimization of the disturbance suppression options can make good resistance to similar areas around the object.Then the object score of probability map is obtained by the sliding window,and the candidate window with the highest probability map score is selected as the new object center.Thirdly,according to the new object location,the probability map is updated,the scale estimation function is adjusted to the size of real object.From qualitative and quantitative analysis,the comparison experiments are verified in representative video sequences,and our approach outperforms typical methods,such as distraction-aware online tracking,mean shift,variance ratio,and adaptive colour attributes.展开更多
Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this pr...Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this problem. Of all the algorithms, the ge- netic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes maybe infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references.展开更多
Pre-stack waveform inversion, by inverting seismic information, can estimate subsurface elastic properties for reservoir characterization, thus effectively guiding exploration. In recent years, nonlinear inversion met...Pre-stack waveform inversion, by inverting seismic information, can estimate subsurface elastic properties for reservoir characterization, thus effectively guiding exploration. In recent years, nonlinear inversion methods, such as standard genetic algorithm, have been extensively adopted in seismic inversion due to its simplicity, versatility, and robustness. However, standard genetic algorithms have some shortcomings, such as slow convergence rate and easiness to fall into local optimum. In order to overcome these problems, the authors present a new adaptive genetic algorithm for seismic inversion, in which the selection adopts regional equilibrium and elite retention strategies are adopted, and adaptive operators are used in the crossover and mutation to implement local search. After applying this method to pre-stack seismic data, it is found that higher quality inversion results can be achieved within reasonable running time.展开更多
In order to fully interpret and describe damage mechanics, the origin and development of fuzzy stochastic damage mechanics were introduced based on the analysis of the harmony of damage, probability, and fuzzy members...In order to fully interpret and describe damage mechanics, the origin and development of fuzzy stochastic damage mechanics were introduced based on the analysis of the harmony of damage, probability, and fuzzy membership in the interval of [0,1]. In a complete normed linear space, it was proven that a generalized damage field can be simulated through β probability distribution. Three kinds of fuzzy behaviors of damage variables were formulated and explained through analysis of the generalized uncertainty of damage variables and the establishment of a fuzzy functional expression. Corresponding fuzzy mapping distributions, namely, the half-depressed distribution, swing distribution, and combined swing distribution, which can simulate varying fuzzy evolution in diverse stochastic damage situations, were set up. Furthermore, through demonstration of the generalized probabilistic characteristics of damage variables, the cumulative distribution function and probability density function of fuzzy stochastic damage variables, which show β probability distribution, were modified according to the expansion principle. The three-dimensional fuzzy stochastic damage mechanical behaviors of the Longtan rolled-concrete dam were examined with the self-developed fuzzy stochastic damage finite element program. The statistical correlation and non-normality of random field parameters were considered comprehensively in the fuzzy stochastic damage model described in this paper. The results show that an initial damage field based on the comprehensive statistical evaluation helps to avoid many difficulties in the establishment of experiments and numerical algorithms for damage mechanics analysis.展开更多
基金supported by the NSF of China(No.12171085)This work was supported by the National Key R&D Program of China(2020YFA0712000)+2 种基金the NSF of China(No.12288201)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA25010404)and the Youth Innovation Promotion Association(CAS).
文摘This is the second part of our series works on failure-informed adaptive sampling for physic-informed neural networks(PINNs).In our previous work(SIAM J.Sci.Comput.45:A1971–A1994),we have presented an adaptive sampling framework by using the failure probability as the posterior error indicator,where the truncated Gaussian model has been adopted for estimating the indicator.Here,we present two extensions of that work.The first extension consists in combining with a re-sampling technique,so that the new algorithm can maintain a constant training size.This is achieved through a cosine-annealing,which gradually transforms the sampling of collocation points from uniform to adaptive via the training progress.The second extension is to present the subset simulation(SS)algorithm as the posterior model(instead of the truncated Gaussian model)for estimating the error indicator,which can more effectively estimate the failure probability and generate new effective training points in the failure region.We investigate the performance of the new approach using several challenging problems,and numerical experiments demonstrate a significant improvement over the original algorithm.
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
文摘Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach.
基金Project(2010-0020163)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education
文摘A novel approach is proposed for improving adaptive feedback cancellation using a variable step-size affine projection algorithm(VSS-APA) based on global speech absence probability(GSAP).The variable step-size of the proposed VSS-APA is adjusted according to the GSAP of the current frame.The weight vector of the adaptive filter is updated by the probability of the speech absence.The performance measure of acoustic feedback cancellation is evaluated using normalized misalignment.Experimental results demonstrate that the proposed approach has better performance than the normalized least mean square(NLMS) and the constant step-size affine projection algorithms.
基金Project(60574030) supported by the National Natural Science Foundation of ChinaKey Project(60634020) supported by the National Natural Science Foundation of China
文摘There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search.
基金This work was supported in part by the National Natural Science Foundation of China under Grant Nos.61806028,61672437 and 61702428Sichuan Sci-ence and Technology Program under Grant Nos.2018GZ0245,21ZDYF2484,18ZDYF3269,2021YFN0104,2021YFN0104,21GJHZ0061,21ZDYF3629,2021YFG0295,2021YFG0133,21ZDYF2907,21ZDYF0418,21YYJC1827,21ZDYF3537,21ZDYF3598,2019YJ0356the Chinese Scholarship Council under Grant Nos.202008510036,201908515022。
文摘Autonomous intelligence plays a significant role in aviation security.Since most aviation accidents occur in the take-off and landing stage,accurate tracking of moving object in airport apron will be a vital approach to ensure the operation of the aircraft safely.In this study,an adaptive object tracking method based on a discriminant is proposed in multi-camera panorama surveillance of large-scale airport apron.Firstly,based on channels of color histogram,the pre-estimated object probability map is employed to reduce searching computation,and the optimization of the disturbance suppression options can make good resistance to similar areas around the object.Then the object score of probability map is obtained by the sliding window,and the candidate window with the highest probability map score is selected as the new object center.Thirdly,according to the new object location,the probability map is updated,the scale estimation function is adjusted to the size of real object.From qualitative and quantitative analysis,the comparison experiments are verified in representative video sequences,and our approach outperforms typical methods,such as distraction-aware online tracking,mean shift,variance ratio,and adaptive colour attributes.
基金the National Natural Science Foundation of China(Nos.60574071 and70771080)
文摘Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this problem. Of all the algorithms, the ge- netic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes maybe infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references.
基金Supported by the Major Projects of the National Science and Technology of China(No.2016ZX05026-002-003)National Natural Science Foundation of China(No.41374108)
文摘Pre-stack waveform inversion, by inverting seismic information, can estimate subsurface elastic properties for reservoir characterization, thus effectively guiding exploration. In recent years, nonlinear inversion methods, such as standard genetic algorithm, have been extensively adopted in seismic inversion due to its simplicity, versatility, and robustness. However, standard genetic algorithms have some shortcomings, such as slow convergence rate and easiness to fall into local optimum. In order to overcome these problems, the authors present a new adaptive genetic algorithm for seismic inversion, in which the selection adopts regional equilibrium and elite retention strategies are adopted, and adaptive operators are used in the crossover and mutation to implement local search. After applying this method to pre-stack seismic data, it is found that higher quality inversion results can be achieved within reasonable running time.
基金supported by the National Natural Science Foundation of China(Grant No51109118)the China Postdoctoral Science Foundation(Grant No20100470344)+1 种基金the Fundamental Project Fund of Zhejiang Ocean University(Grant No21045032610)the Initiating Project Fund for Doctors of Zhejiang Ocean University(Grant No21045011909)
文摘In order to fully interpret and describe damage mechanics, the origin and development of fuzzy stochastic damage mechanics were introduced based on the analysis of the harmony of damage, probability, and fuzzy membership in the interval of [0,1]. In a complete normed linear space, it was proven that a generalized damage field can be simulated through β probability distribution. Three kinds of fuzzy behaviors of damage variables were formulated and explained through analysis of the generalized uncertainty of damage variables and the establishment of a fuzzy functional expression. Corresponding fuzzy mapping distributions, namely, the half-depressed distribution, swing distribution, and combined swing distribution, which can simulate varying fuzzy evolution in diverse stochastic damage situations, were set up. Furthermore, through demonstration of the generalized probabilistic characteristics of damage variables, the cumulative distribution function and probability density function of fuzzy stochastic damage variables, which show β probability distribution, were modified according to the expansion principle. The three-dimensional fuzzy stochastic damage mechanical behaviors of the Longtan rolled-concrete dam were examined with the self-developed fuzzy stochastic damage finite element program. The statistical correlation and non-normality of random field parameters were considered comprehensively in the fuzzy stochastic damage model described in this paper. The results show that an initial damage field based on the comprehensive statistical evaluation helps to avoid many difficulties in the establishment of experiments and numerical algorithms for damage mechanics analysis.