In the existing formation model,vehicles in the same lane or adjacent lane are regarded as the structure,and the driving behavior of vehicles is studied from the perspectives of safety,speed consistency,and stability,...In the existing formation model,vehicles in the same lane or adjacent lane are regarded as the structure,and the driving behavior of vehicles is studied from the perspectives of safety,speed consistency,and stability,and the speed control model is proposed from the perspective of vehicles themselves,to obtain a stable fleet with the same distance and speed.However,in this process,the initial condition of the vehicle,the traffic flow environment,and the efficiency of the fleet formation are less considered.Therefore,based on summarizing the existing fleet building model,this paper puts forward the rapid construction model and algorithm of a cooperative adaptive cruise control platoon fleet.One of the important goals of forming a team is to enter the team with the smoothest trajectory in the shortest time.Therefore,this chapter studies the trajectory optimization of the vehicle formation process from the perspective of vehicle dynamics.展开更多
In this article,lane change models for mixed traffic flow under cooperative adaptive cruise control(CACC)platoon formation are established.The analysis begins by examining the impact of lane changes on traffic flow st...In this article,lane change models for mixed traffic flow under cooperative adaptive cruise control(CACC)platoon formation are established.The analysis begins by examining the impact of lane changes on traffic flow stability.The influences of various factors such as lane change locations,timing,and the current traffic state on stability are discussed.In this analysis,it is assumed that the lane change location and the entry position in the adjacent lane have already been selected,without considering the specific intention behind the lane change.The speeds of the involved vehicles are adjusted based on an existing lane change model,and various conditions are analyzed for traffic flow disturbances,including duration,shock amplitude,and driving delays.Numerical calculations are provided to illustrate these effects.Additionally,traffic flow stability is factored into the lane change decision-making process.By incorporating disturbances to the fleet into the lane change income model,both a lane change intention model and a lane change execution model are constructed.These models are then compared with a model that does not account for stability,leading to the corresponding conclusions.展开更多
For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication dela...For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.展开更多
A new adaptive cruise control (ACC) method based on the desired safety headway distance is investigated for improving the vehicle traffic safety at high speed by regulating the additional throttle opening and braking ...A new adaptive cruise control (ACC) method based on the desired safety headway distance is investigated for improving the vehicle traffic safety at high speed by regulating the additional throttle opening and braking torque of driving wheels only. The selection of headway distance sensors, the determination of desired safety headway distance and desired deceleration are elaborated. The ACC flowchart and simulation, as well as signal misinformation and its resolutions are described. The simulation proves that the new ACC method is simpler and feasible. The new method is easily integrated ACC with ABS/ASR to form an organic ABS/ASR/ACC system.展开更多
Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha...Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.展开更多
Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect ...Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect is covered by the notion of string stability. String-stable behavior is thus considered an essential requirement for the design of automatic distance control systems, which are needed to allow for safe driving at time gaps well below 1 s. Using wireless inter-vehicle communications to provide real-time information of the preceding vehicle, in addition to the information obtained by common Adaptive Cruise Control (ACC) sensors, appears to significantly decrease the feasible time gap, which is shown by practical experiments with a test fleet consisting of six passenger vehicles. The large-scale deployment of this system, known as Cooperative ACC (CACC), however, poses challenges with respect to the reliability of the wireless communication system. A solution for this scalability problem can be found in decreasing the transmission power and/or beaconing rate, or adapting the communications protocol. Although the main CACC objective is to increase road throughput, the first commercial application of CACC is foreseen to be in truck platooning, since short distance following is expected to yield significant fuel savings in this case.展开更多
A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented. The running relationship between the ACC vehicle and the detected target vehicle is described by the relative veloc...A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented. The running relationship between the ACC vehicle and the detected target vehicle is described by the relative velocity and the deviation between the actual headway distance and the prescribed safety distance. Based on this, two state space models are built and the linear quadratic optimal control theory is used to yield desired velocity for the ACC-equipped vehicle when with the target vehicle detected. By switching among four control modes, the desired velocity profile is designed to deal with different running situations. A velocity controller, which includes a PID controller for throttle openness and a neural network controller for brake application, is developed to achieve the desired velocity profile. The proposed control strategy is applied to a non-linear vehicle model in a simulation environment and is shown to provide the ACC vehicle comfortable ride and satisfying safety.展开更多
To improve the ride comfort and safety of a traditional adaptive cruise control(ACC)system when the preceding vehicle changes lanes,it proposes a target vehicle selection algorithm based on the prediction of the lane-...To improve the ride comfort and safety of a traditional adaptive cruise control(ACC)system when the preceding vehicle changes lanes,it proposes a target vehicle selection algorithm based on the prediction of the lane-changing intention for the preceding vehicle.First,the Next Generation Simulation dataset is used to train a lane-changing intention prediction algorithm based on a sliding window support vector machine,and the lane-changing intention of the preceding vehicle in the current lane is identified by lateral position offset.Second,according to the lane-changing intention and collision threat of the preceding vehicle,the target vehicle selection algorithm is studied under three different conditions:safe lane-changing,dangerous lane-changing,and lane-changing cancellation.Finally,the effectiveness of the proposed algorithm is verified in a co-simulation platform.The simulation results show that the target vehicle selection algorithm can ensure the smooth transfer of the target vehicle and effectively reduce the longitudinal acceleration fluctuation of the subject vehicle when the preceding vehicle changes lanes safely or cancels their lane change maneuver.In the case of a dangerous lane change,the target vehicle selection algorithm proposed in this paper can respond more rapidly to a dangerous lane change than the target vehicle selection method of the traditional ACC system;thus,it can effectively avoid collisions and improve the safety of the subject vehicle.展开更多
A directly adaptive fuzzy algorithm is applied in vehicle adaptive cruise control system. The basic principle of the adaptive fuzzy algorithm is analyzed. The initial value of the fuzzy based vector is given by the tr...A directly adaptive fuzzy algorithm is applied in vehicle adaptive cruise control system. The basic principle of the adaptive fuzzy algorithm is analyzed. The initial value of the fuzzy based vector is given by the traditional fuzzy membership. Adaptive law of the adjustable parameters 6 is also determined. The directly adaptive fuzzy ACC controller is designed based on Matlab fuzzy toolbox. Matlab-Simulink is adopted to test the function of the adaptive fuzzy ACC controller. The control system is established using a 7 DOF vehicle dynamics model. Simulation results indicate that the principle of the method is correct and it performs well both in cruise and distance keeping.展开更多
Intelligent vehicles can effectively improve traffic congestion and road traffic safety.Adaptive cruise followingcontrol(ACFC)is a vital part of intelligent vehicles.In this paper,a new hierarchical vehicle-following ...Intelligent vehicles can effectively improve traffic congestion and road traffic safety.Adaptive cruise followingcontrol(ACFC)is a vital part of intelligent vehicles.In this paper,a new hierarchical vehicle-following control strategy is presented by synthesizing the variable time headway model,type-2 fuzzy control,feedforward+fuzzy proportion integration(PI)feedback(F+FPIF)control,and inverse longitudinal dynamics model of vehicles.Firstly,a traditional variable time headway model is improved considering the acceleration of the lead car.Secondly,an interval type-2 fuzzy logic controller(IT2 FLC)is designed for the upper structure of the ACFC system to simulate the driver's operating habits.To reduce the nonlinear influence and improve the tracking accuracy for the desired acceleration,the control strategy of F+FPIF is given for the lower control structure.Thirdly,the lower control method proposed in this paper is compared with the fuzzy PI control and the traditional method(no lower controller for tracking desired acceleration)separately.Meanwhile,the proportion integration differentiation(PID),linear quadratic regulator(LQR),subsection function control(SFC)and type-1 fuzzy logic control(T1 FLC)are respectively compared with the IT2 FLC in control performance under different scenes.Finally,the simulation results show the effectiveness of IT2 FLC for the upper structure and F+FPIF control for the lower structure.展开更多
This paper presents a fusion control strategy of adaptive cruise control(ACC) and collision avoidance(CA),which takes into account a driver’s behavioral style. First, a questionnaire survey was performed to identify ...This paper presents a fusion control strategy of adaptive cruise control(ACC) and collision avoidance(CA),which takes into account a driver’s behavioral style. First, a questionnaire survey was performed to identify driver type, and the corresponding driving behavioral data were collected via driving simulator experiments, which served as the template data for the online identification of driver type. Then, the driveradaptive ACC/CA fusion control strategy was designed, and its effect was verified by virtual experiments. The results indicate that the proposed control strategy could achieve the fusion control of ACC and CA successfully and improve driver adaptability and comfort.展开更多
To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed c...To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.展开更多
To further investigate car-following behaviors in the cooperative adaptive cruise control(CACC) strategy,a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and s...To further investigate car-following behaviors in the cooperative adaptive cruise control(CACC) strategy,a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models.In this control system,some vital comprehensive information,such as multiple preceding cars’ speed differences and headway,variable safety distance(VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods.Local and string stability criterion for the velocity control(VC) model and gap control(GC) model are derived via linear stability theory.Numerical simulations are conducted to study the performance of the simulated traffic flow.The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion.展开更多
Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumpti...Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.展开更多
文摘In the existing formation model,vehicles in the same lane or adjacent lane are regarded as the structure,and the driving behavior of vehicles is studied from the perspectives of safety,speed consistency,and stability,and the speed control model is proposed from the perspective of vehicles themselves,to obtain a stable fleet with the same distance and speed.However,in this process,the initial condition of the vehicle,the traffic flow environment,and the efficiency of the fleet formation are less considered.Therefore,based on summarizing the existing fleet building model,this paper puts forward the rapid construction model and algorithm of a cooperative adaptive cruise control platoon fleet.One of the important goals of forming a team is to enter the team with the smoothest trajectory in the shortest time.Therefore,this chapter studies the trajectory optimization of the vehicle formation process from the perspective of vehicle dynamics.
文摘In this article,lane change models for mixed traffic flow under cooperative adaptive cruise control(CACC)platoon formation are established.The analysis begins by examining the impact of lane changes on traffic flow stability.The influences of various factors such as lane change locations,timing,and the current traffic state on stability are discussed.In this analysis,it is assumed that the lane change location and the entry position in the adjacent lane have already been selected,without considering the specific intention behind the lane change.The speeds of the involved vehicles are adjusted based on an existing lane change model,and various conditions are analyzed for traffic flow disturbances,including duration,shock amplitude,and driving delays.Numerical calculations are provided to illustrate these effects.Additionally,traffic flow stability is factored into the lane change decision-making process.By incorporating disturbances to the fleet into the lane change income model,both a lane change intention model and a lane change execution model are constructed.These models are then compared with a model that does not account for stability,leading to the corresponding conclusions.
基金Supported by National Natural Science Foundation of China(Grant No.61371076)
文摘For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.
文摘A new adaptive cruise control (ACC) method based on the desired safety headway distance is investigated for improving the vehicle traffic safety at high speed by regulating the additional throttle opening and braking torque of driving wheels only. The selection of headway distance sensors, the determination of desired safety headway distance and desired deceleration are elaborated. The ACC flowchart and simulation, as well as signal misinformation and its resolutions are described. The simulation proves that the new ACC method is simpler and feasible. The new method is easily integrated ACC with ABS/ASR to form an organic ABS/ASR/ACC system.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.
文摘Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect is covered by the notion of string stability. String-stable behavior is thus considered an essential requirement for the design of automatic distance control systems, which are needed to allow for safe driving at time gaps well below 1 s. Using wireless inter-vehicle communications to provide real-time information of the preceding vehicle, in addition to the information obtained by common Adaptive Cruise Control (ACC) sensors, appears to significantly decrease the feasible time gap, which is shown by practical experiments with a test fleet consisting of six passenger vehicles. The large-scale deployment of this system, known as Cooperative ACC (CACC), however, poses challenges with respect to the reliability of the wireless communication system. A solution for this scalability problem can be found in decreasing the transmission power and/or beaconing rate, or adapting the communications protocol. Although the main CACC objective is to increase road throughput, the first commercial application of CACC is foreseen to be in truck platooning, since short distance following is expected to yield significant fuel savings in this case.
基金the National Natural Science Foundation of China (50122155)
文摘A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented. The running relationship between the ACC vehicle and the detected target vehicle is described by the relative velocity and the deviation between the actual headway distance and the prescribed safety distance. Based on this, two state space models are built and the linear quadratic optimal control theory is used to yield desired velocity for the ACC-equipped vehicle when with the target vehicle detected. By switching among four control modes, the desired velocity profile is designed to deal with different running situations. A velocity controller, which includes a PID controller for throttle openness and a neural network controller for brake application, is developed to achieve the desired velocity profile. The proposed control strategy is applied to a non-linear vehicle model in a simulation environment and is shown to provide the ACC vehicle comfortable ride and satisfying safety.
基金Supported by National Key Research and Development Program(Grant No.2017YFB0102601)National Natural Science Foundation of China(Grant Nos.51775236,U1564214).
文摘To improve the ride comfort and safety of a traditional adaptive cruise control(ACC)system when the preceding vehicle changes lanes,it proposes a target vehicle selection algorithm based on the prediction of the lane-changing intention for the preceding vehicle.First,the Next Generation Simulation dataset is used to train a lane-changing intention prediction algorithm based on a sliding window support vector machine,and the lane-changing intention of the preceding vehicle in the current lane is identified by lateral position offset.Second,according to the lane-changing intention and collision threat of the preceding vehicle,the target vehicle selection algorithm is studied under three different conditions:safe lane-changing,dangerous lane-changing,and lane-changing cancellation.Finally,the effectiveness of the proposed algorithm is verified in a co-simulation platform.The simulation results show that the target vehicle selection algorithm can ensure the smooth transfer of the target vehicle and effectively reduce the longitudinal acceleration fluctuation of the subject vehicle when the preceding vehicle changes lanes safely or cancels their lane change maneuver.In the case of a dangerous lane change,the target vehicle selection algorithm proposed in this paper can respond more rapidly to a dangerous lane change than the target vehicle selection method of the traditional ACC system;thus,it can effectively avoid collisions and improve the safety of the subject vehicle.
基金Sponsored by the National Natural Science Foundation of China (501222155)
文摘A directly adaptive fuzzy algorithm is applied in vehicle adaptive cruise control system. The basic principle of the adaptive fuzzy algorithm is analyzed. The initial value of the fuzzy based vector is given by the traditional fuzzy membership. Adaptive law of the adjustable parameters 6 is also determined. The directly adaptive fuzzy ACC controller is designed based on Matlab fuzzy toolbox. Matlab-Simulink is adopted to test the function of the adaptive fuzzy ACC controller. The control system is established using a 7 DOF vehicle dynamics model. Simulation results indicate that the principle of the method is correct and it performs well both in cruise and distance keeping.
基金the National Natural Science Foundation of China(61473048,61074093,61873321)。
文摘Intelligent vehicles can effectively improve traffic congestion and road traffic safety.Adaptive cruise followingcontrol(ACFC)is a vital part of intelligent vehicles.In this paper,a new hierarchical vehicle-following control strategy is presented by synthesizing the variable time headway model,type-2 fuzzy control,feedforward+fuzzy proportion integration(PI)feedback(F+FPIF)control,and inverse longitudinal dynamics model of vehicles.Firstly,a traditional variable time headway model is improved considering the acceleration of the lead car.Secondly,an interval type-2 fuzzy logic controller(IT2 FLC)is designed for the upper structure of the ACFC system to simulate the driver's operating habits.To reduce the nonlinear influence and improve the tracking accuracy for the desired acceleration,the control strategy of F+FPIF is given for the lower control structure.Thirdly,the lower control method proposed in this paper is compared with the fuzzy PI control and the traditional method(no lower controller for tracking desired acceleration)separately.Meanwhile,the proportion integration differentiation(PID),linear quadratic regulator(LQR),subsection function control(SFC)and type-1 fuzzy logic control(T1 FLC)are respectively compared with the IT2 FLC in control performance under different scenes.Finally,the simulation results show the effectiveness of IT2 FLC for the upper structure and F+FPIF control for the lower structure.
基金supported by the National Natural Science Foundation of China(51775178,51875049)Hunan Province Natural Science Outstanding Youth Fund(2019JJ20017)。
文摘This paper presents a fusion control strategy of adaptive cruise control(ACC) and collision avoidance(CA),which takes into account a driver’s behavioral style. First, a questionnaire survey was performed to identify driver type, and the corresponding driving behavioral data were collected via driving simulator experiments, which served as the template data for the online identification of driver type. Then, the driveradaptive ACC/CA fusion control strategy was designed, and its effect was verified by virtual experiments. The results indicate that the proposed control strategy could achieve the fusion control of ACC and CA successfully and improve driver adaptability and comfort.
基金the Hi-Tech Research and Development Pro-gram (863) of China (No. 2006AA04Z233)the National NaturalScience Foundation of China (No. 50575205)the Natural ScienceFoundation of Zhejiang Province (Nos. Y104243 and Y105686),China
文摘To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71571107 and 11302110)The Scientific Research Fund of Zhejiang Province,China(Grant Nos.LY15A020007,LY15E080013,and LY16G010003)+2 种基金The Natural Science Foundation of Ningbo City(Grant Nos.2014A610030and 2015A610299)the Fund from the Government of the Hong Kong Administrative Region,China(Grant No.City U11209614)the K C Wong Magna Fund in Ningbo University,China
文摘To further investigate car-following behaviors in the cooperative adaptive cruise control(CACC) strategy,a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models.In this control system,some vital comprehensive information,such as multiple preceding cars’ speed differences and headway,variable safety distance(VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods.Local and string stability criterion for the velocity control(VC) model and gap control(GC) model are derived via linear stability theory.Numerical simulations are conducted to study the performance of the simulated traffic flow.The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion.
基金supported in part by Australian Research Council Discovery Early Career Researcher Award(DE210100273)。
文摘Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.