期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Well production optimization using streamline features-based objective function and Bayesian adaptive direct search algorithm 被引量:2
1
作者 Qi-Hong Feng Shan-Shan Li +2 位作者 Xian-Min Zhang Xiao-Fei Gao Ji-Hui Ni 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2879-2894,共16页
Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.T... Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development. 展开更多
关键词 Well production Optimization efficiency Streamline simulation Streamline feature Objective function Bayesian adaptive direct search algorithm
下载PDF
An adaptive beamforming algorithm based on direction vector rotation and joint iterative optimization
2
作者 XIE Jianping WANG Rui +1 位作者 HE Xiongxiong LI Sheng 《Chinese Journal of Acoustics》 CSCD 2017年第1期87-101,共15页
An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVD... An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVDR), the proposed algorithm jointly updates a transforming matrix and a reduced-rank filter. Each column of the transforming matrix is treated as an independent direction vector and updates the weight values of each dimension within a subspace. In addition, the direction vector rotation improves the performance of the algorithm by reducing the uncertainties due to the direction error. Simulation results show that the RJIO-DA algorithm has lower complexity and faster convergence than other conventional reduced-rank algorithms. 展开更多
关键词 SINR DA MVDR RLS An adaptive beamforming algorithm based on direction vector rotation and joint iterative optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部