A new adaptive Packet algorithm based on Discrete Cosine harmonic wavelet transform (DCHWT), (DCAHWP) has been proposed. This is realized by the Discrete Cosine Harmonic Wavelet transform (DCHTWT) which exploits the g...A new adaptive Packet algorithm based on Discrete Cosine harmonic wavelet transform (DCHWT), (DCAHWP) has been proposed. This is realized by the Discrete Cosine Harmonic Wavelet transform (DCHTWT) which exploits the good properties of DCT viz., energy compaction (low leakage), frequency resolution and computational simplicity due its real nature, compared to those of DFT and its harmonic wavelet version. Hence the proposed wavelet packet is advantageous both in terms of performance and computational efficiency compared to those of existing DFT harmonic wavelet packet. Further, the new DCAHWP also enjoys the desirable properties of a Harmonic wavelet transform over the time domain WT, viz., built in decimation without any explicit antialiasing filtering and easy interpolation by mere concatenation of different scales in frequency (DCT) domain with out any image rejection filter and with out laborious delay compensation required. Further, the compression by the proposed DCAHWP is much better compared to that by adaptive WP based on Daubechies-2 wavelet (DBAWP). For a compression factor (CF) of 1/8, the ratio of the percentage error energy by proposed DCAHWP to that by DBAWP is about 1/8 and 1/5 for considered 1-D signal and speech signal, respectively. Its compression performance is better than that of DCHWT, both for 1-D and 2-D signals. The improvement is more significant for signals with abrupt changes or images with rapid variations (textures). For compression factor of 1/8, the ratio of the percentage error energy by DCAHWP to that by DCHWT, is about 1/3 and 1/2, for the considered 1-D signal and speech signal, respectively. This factor for an image considered is 2/3 and in particular for a textural image it is 1/5.展开更多
A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visua...A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visual system (HVS). One is suited for embedding a digital watermark, the other is not. So the appropriate blocks in an image are selected to embed the watermark. The wetermark is embedded in the middle-frequency part of the host image in conjunction with HVS and discrete cosine transform (DCT). The maximal watermark strength is fixed according to the frequency masking. In the same time, for the good performance, the watermark is modulated into a fractal modulation array. The simulation results show that we can remarkably extract the hiding watermark and the algorithm can achieve good robustness with common signal distortion or geometric distortion and the quality of the watermarked image is guaranteed.展开更多
The adaptive reconstruction for the lost information of the rectangular image area is very important for the robust transmission and restoration of the image. In this paper, a new reconstruction method based on the Di...The adaptive reconstruction for the lost information of the rectangular image area is very important for the robust transmission and restoration of the image. In this paper, a new reconstruction method based on the Discrete Cosine Transform (DCT) domain has been put forward. According to the low pass character of the human visual system and the energy distribution of the DCT coefficients on the rectangular boundary, the DCT coefficients of the rectangular image area are adaptively selected and recovered. After the Inverse Discrete Cosine Transform (IDCT), the lost information of the rectangular image area can be reconstructed. The experiments have demonstrated that the subjective and objective qualities of the reconstructed images are enhanced greatly than before.展开更多
文摘A new adaptive Packet algorithm based on Discrete Cosine harmonic wavelet transform (DCHWT), (DCAHWP) has been proposed. This is realized by the Discrete Cosine Harmonic Wavelet transform (DCHTWT) which exploits the good properties of DCT viz., energy compaction (low leakage), frequency resolution and computational simplicity due its real nature, compared to those of DFT and its harmonic wavelet version. Hence the proposed wavelet packet is advantageous both in terms of performance and computational efficiency compared to those of existing DFT harmonic wavelet packet. Further, the new DCAHWP also enjoys the desirable properties of a Harmonic wavelet transform over the time domain WT, viz., built in decimation without any explicit antialiasing filtering and easy interpolation by mere concatenation of different scales in frequency (DCT) domain with out any image rejection filter and with out laborious delay compensation required. Further, the compression by the proposed DCAHWP is much better compared to that by adaptive WP based on Daubechies-2 wavelet (DBAWP). For a compression factor (CF) of 1/8, the ratio of the percentage error energy by proposed DCAHWP to that by DBAWP is about 1/8 and 1/5 for considered 1-D signal and speech signal, respectively. Its compression performance is better than that of DCHWT, both for 1-D and 2-D signals. The improvement is more significant for signals with abrupt changes or images with rapid variations (textures). For compression factor of 1/8, the ratio of the percentage error energy by DCAHWP to that by DCHWT, is about 1/3 and 1/2, for the considered 1-D signal and speech signal, respectively. This factor for an image considered is 2/3 and in particular for a textural image it is 1/5.
基金Supported by the National Natural Science Foundation ofChina (10571127) the Doctoral Foundation of the Ministry of Educationof China (20040610004)
文摘A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visual system (HVS). One is suited for embedding a digital watermark, the other is not. So the appropriate blocks in an image are selected to embed the watermark. The wetermark is embedded in the middle-frequency part of the host image in conjunction with HVS and discrete cosine transform (DCT). The maximal watermark strength is fixed according to the frequency masking. In the same time, for the good performance, the watermark is modulated into a fractal modulation array. The simulation results show that we can remarkably extract the hiding watermark and the algorithm can achieve good robustness with common signal distortion or geometric distortion and the quality of the watermarked image is guaranteed.
文摘The adaptive reconstruction for the lost information of the rectangular image area is very important for the robust transmission and restoration of the image. In this paper, a new reconstruction method based on the Discrete Cosine Transform (DCT) domain has been put forward. According to the low pass character of the human visual system and the energy distribution of the DCT coefficients on the rectangular boundary, the DCT coefficients of the rectangular image area are adaptively selected and recovered. After the Inverse Discrete Cosine Transform (IDCT), the lost information of the rectangular image area can be reconstructed. The experiments have demonstrated that the subjective and objective qualities of the reconstructed images are enhanced greatly than before.