期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
An Improved Gorilla Troops Optimizer Based on Lens Opposition-Based Learning and Adaptive β-Hill Climbing for Global Optimization
1
作者 Yaning Xiao Xue Sun +3 位作者 Yanling Guo Sanping Li Yapeng Zhang Yangwei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期815-850,共36页
Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and ... Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and stability of GTOwill deterioratewhen the optimization problems to be solved becomemore complex and flexible.To overcome these defects and achieve better performance,this paper proposes an improved gorilla troops optimizer(IGTO).First,Circle chaotic mapping is introduced to initialize the positions of gorillas,which facilitates the population diversity and establishes a good foundation for global search.Then,in order to avoid getting trapped in the local optimum,the lens opposition-based learning mechanism is adopted to expand the search ranges.Besides,a novel local search-based algorithm,namely adaptiveβ-hill climbing,is amalgamated with GTO to increase the final solution precision.Attributed to three improvements,the exploration and exploitation capabilities of the basic GTOare greatly enhanced.The performance of the proposed algorithm is comprehensively evaluated and analyzed on 19 classical benchmark functions.The numerical and statistical results demonstrate that IGTO can provide better solution quality,local optimumavoidance,and robustness compared with the basic GTOand five other wellknown algorithms.Moreover,the applicability of IGTOis further proved through resolving four engineering design problems and training multilayer perceptron.The experimental results suggest that IGTO exhibits remarkable competitive performance and promising prospects in real-world tasks. 展开更多
关键词 Gorilla troops optimizer circle chaotic mapping lens opposition-based learning adaptiveβ-hill climbing
下载PDF
Modified Elite Opposition-Based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System 被引量:2
2
作者 Laith Abualigah Serdar Ekinci +1 位作者 Davut Izci Raed Abu Zitar 《Intelligent Automation & Soft Computing》 2023年第11期169-183,共15页
Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-... Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area. 展开更多
关键词 Cruise control system FOPID controller artificial hummingbird algorithm elite opposition-based learning
下载PDF
Strengthened Initialization of Adaptive Cross-Generation Differential Evolution
3
作者 Wei Wan Gaige Wang Junyu Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1495-1516,共22页
Adaptive Cross-Generation Differential Evolution(ACGDE)is a recently-introduced algorithm for solving multiobjective problems with remarkable performance compared to other evolutionary algorithms(EAs).However,its conv... Adaptive Cross-Generation Differential Evolution(ACGDE)is a recently-introduced algorithm for solving multiobjective problems with remarkable performance compared to other evolutionary algorithms(EAs).However,its convergence and diversity are not satisfactory compared with the latest algorithms.In order to adapt to the current environment,ACGDE requires improvements in many aspects,such as its initialization and mutant operator.In this paper,an enhanced version is proposed,namely SIACGDE.It incorporates a strengthened initialization strategy and optimized parameters in contrast to its predecessor.These improvements make the direction of crossgeneration mutation more clearly and the ability of searching more efficiently.The experiments show that the new algorithm has better diversity and improves convergence to a certain extent.At the same time,SIACGDE outperforms other state-of-the-art algorithms on four metrics of 24 test problems. 展开更多
关键词 Differential Evolution(DE) multi-objective optimization(MO) opposition-based learning parameter adaptation
下载PDF
基于改进白鲸优化算法的D2D通信功率控制 被引量:1
4
作者 孙明 吕天宇 《高师理科学刊》 2024年第4期40-47,共8页
D2D(Device-to-Device)通信作为未来移动通信网络的关键技术,为用户提供了直接通信的便利性和资源共享的高效性.然而,D2D通信的功率控制一直是影响通信质量和系统性能的关键问题.为解决这一问题,将精英反向学习、自适应权重两种策略引... D2D(Device-to-Device)通信作为未来移动通信网络的关键技术,为用户提供了直接通信的便利性和资源共享的高效性.然而,D2D通信的功率控制一直是影响通信质量和系统性能的关键问题.为解决这一问题,将精英反向学习、自适应权重两种策略引入到白鲸优化算法(Beluga Whale Optimization,BWO)中,并利用莱维飞行的随机步长策略来增加算法寻优的多样性,提出了基于改进白鲸优化算法的D2D通信功率控制方法.该方法利用最优解的信息引导搜索过程,可提高搜索效率和全局收敛,并能够有效提高通信效率和系统稳定性.为了验证所提出方法的有效性,开展了大量的数值仿真实验.结果显示,基于改进白鲸优化算法的D2D通信功率控制方法在增加系统吞吐量、减少干扰方面有显著的改善.同时,提出的算法相对于已有的算法有着更出色的收敛性与鲁棒性,在不同通信环境和参数设置下都能表现出更稳定的性能. 展开更多
关键词 D2D通信 功率控制 白鲸优化算法 精英反向学习 自适应权重 莱维飞行
下载PDF
基于改进SCSO算法的光伏MPPT研究
5
作者 付光杰 王柏松 《现代电子技术》 北大核心 2024年第10期143-150,共8页
在解决光伏阵列在局部遮挡时发电效率降低的问题时,传统最大功率点追踪(MPPT)方法容易追踪失败。为此,提出一种改进沙猫群优化算法的最大功率点追踪方法。该算法在标准沙猫群算法的基础上,引入了精英反向学习和自适应t分布,同时优化沙... 在解决光伏阵列在局部遮挡时发电效率降低的问题时,传统最大功率点追踪(MPPT)方法容易追踪失败。为此,提出一种改进沙猫群优化算法的最大功率点追踪方法。该算法在标准沙猫群算法的基础上,引入了精英反向学习和自适应t分布,同时优化沙猫群算法(SCSO)的局部搜索并融合Jaya算法。通过对4种典型单峰、多峰函数的测试,证明该算法具有极高的收敛速度,容易跳出局部最优值。将算法应用于MPPT控制中,仿真结果表明:在静态遮荫情况下,所提方法的搜索最大功率点的时间更少;在动态遮荫条件下,重新搜寻到最大功率点的响应时间平均为0.2 s。实验表明所提算法可以适应动态变化的天气,解决了传统算法收敛速度和防止陷入局部最优等问题。 展开更多
关键词 光伏阵列 最大功率点追踪 沙猫群优化算法 精英反向学习 自适应t分布 Jaya算法
下载PDF
引入精英反向学习和柯西变异的混沌蜉蝣算法 被引量:3
6
作者 张少丰 李书琴 《计算机工程与设计》 北大核心 2024年第1期187-196,共10页
为提高蜉蝣算法的收敛速度,提升算法寻优能力,提出一种引入精英反向学习和柯西变异的混沌蜉蝣算法。利用Circle混沌映射序列优化初始种群使种群分布更加均匀,提高种群多样性。在蜉蝣更新阶段,对蜉蝣中的精英个体进行反向学习策略,防止... 为提高蜉蝣算法的收敛速度,提升算法寻优能力,提出一种引入精英反向学习和柯西变异的混沌蜉蝣算法。利用Circle混沌映射序列优化初始种群使种群分布更加均匀,提高种群多样性。在蜉蝣更新阶段,对蜉蝣中的精英个体进行反向学习策略,防止算法陷入局部最优,提高算法收敛速度。为保证种群进化方向和扩大寻优范围,将自适应概率阈值和柯西变异的扰动机制相结合,对劣势蜉蝣个体附近生成更大的扰动。通过8个基准测试函数实验对比和Wilcoxon秩和检验,实验结果表明,混沌蜉蝣算法在收敛速度、求解精度以及稳定性等方面有较大提高。 展开更多
关键词 蜉蝣算法 混沌映射 精英反向学习 柯西变异 扰动机制 自适应 劣势蜉蝣
下载PDF
混合多策略改进的樽海鞘群算法及其应用 被引量:1
7
作者 张家玮 李琳 张奇志 《计算机工程与设计》 北大核心 2024年第3期822-829,共8页
针对标准的樽海鞘群算法(salp swarm algorithm, SSA)在寻优过程中易出现局部最优和收敛速度慢等问题,提出一种混合多策略改进的樽海鞘群算法(ISSA)。利用佳点集策略生成初始种群,使个体均匀分布于搜索空间;将反向学习的思想融入到领导... 针对标准的樽海鞘群算法(salp swarm algorithm, SSA)在寻优过程中易出现局部最优和收敛速度慢等问题,提出一种混合多策略改进的樽海鞘群算法(ISSA)。利用佳点集策略生成初始种群,使个体均匀分布于搜索空间;将反向学习的思想融入到领导者位置更新中,提高算法的搜索精度;加入自适应t分布,利用迭代次数iter作为其自由度参数,改善算法的全局探索能力;引入精英反向学习,筛选更好的种群,避免陷入局部最优。通过一组基准函数和Wilcoxin秩和检验来检测改进算法的性能,实验结果表明,改进算法的探索能力和优化精度都得到明显改善且算法之间存在显著差异,通过实际机械设计案例进一步验证ISSA算法的有效性。 展开更多
关键词 佳点集 反向学习 自适应t分布 精英反向学习 樽海鞘群算法 基准函数 弹簧设计问题
下载PDF
基于改进帝王蝶算法的最大似然DOA估计 被引量:2
8
作者 赵小梅 丁勇 王海涛 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第3期131-140,共10页
针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。I... 针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。IMBO算法通过精英反向学习策略对初始帝王蝶种群进行优化,得到适应度值较优的初始帝王蝶个体,进而能够改善帝王蝶种群的多样性;引入差分进化算法启发的变异操作以及自适应策略对帝王蝶个体的寻优方式进行改进,扩大了算法的搜索空间;引入了高斯-柯西变异算子,自适应调整变异步长,避免算法陷入局部最优。将IMBO应用于ML-DOA,实验表明,与传统的DOA估计算法相比,在不同信源数目、信噪比以及种群数量下,本文提出的算法收敛性能更好,均方根误差更低,运算量更小。 展开更多
关键词 波达方向 最大似然估计 帝王蝶算法 精英反向学习 自适应策略 变异算子
下载PDF
基于对称映射搜索策略的自适应金鹰算法及应用 被引量:1
9
作者 周徐虎 李世港 +1 位作者 罗仪 张伟 《电子科技》 2024年第8期8-16,25,共10页
金鹰优化算法(Golden Eagle Optimizer,GEO)是一种基于种群的元启发式算法,其模拟了金鹰的合作狩猎行为。针对GEO算法中存在的求解精度差和陷入局部最优等问题,文中提出了一种改进MERGEO(Mapped Elitist Reverse GEO)算法。在原算法基... 金鹰优化算法(Golden Eagle Optimizer,GEO)是一种基于种群的元启发式算法,其模拟了金鹰的合作狩猎行为。针对GEO算法中存在的求解精度差和陷入局部最优等问题,文中提出了一种改进MERGEO(Mapped Elitist Reverse GEO)算法。在原算法基础上采用对称映射搜索策略、自适应精英策略和随机反向学习机制这3种方法平衡了算法的探索和开发阶段,获得了规避局部最优能力和较好的优化精度。在10个基准测试函数上对该算法进行独立策略有效性分析、可扩展性分析以及同其他算法的优化性能比较分析。实验结果表明,改进后的MERGEO算法具有较强的竞争力和良好的优化能力。将改进后的算法用于无线传感器网络的覆盖优化问题和压力容器设计问题研究,验证了其实际应用价值。 展开更多
关键词 金鹰优化算法 元启发式算法 对称映射搜索策略 自适应精英策略 随机反向学习 可扩展性分析 无线传感器网络的覆盖优化 压力容器设计
下载PDF
多策略增强型蛇优化器的避障路径规划
10
作者 苏湘粤 李永胜 朱永进 《电子测量技术》 北大核心 2024年第16期174-184,共11页
针对蛇优化器(SO)在机器人路径规划问题求解中存在初始种群多样性不足、前期全局寻优能力弱、后期收敛精度低、容易陷入局部最优等问题,提出一种用于机器人路径规划的多策略增强型蛇优化器(MSESO)。采用佳点集方法对蛇种群进行初始化,... 针对蛇优化器(SO)在机器人路径规划问题求解中存在初始种群多样性不足、前期全局寻优能力弱、后期收敛精度低、容易陷入局部最优等问题,提出一种用于机器人路径规划的多策略增强型蛇优化器(MSESO)。采用佳点集方法对蛇种群进行初始化,增加初始种群多样性,使种群对搜索空间的覆盖更全面;引入两个振荡因子平衡全局搜索与局部开发的过程,并动态更新搜索范围;融入自适应精英反向学习策略充分利用种群有效信息来提高种群质量,增大种群进一步逼近最优解的可能性,加快算法收敛速度和改善收敛精度。将MSESO应用于机器人路径规划,首先开展消融实验来验证改进策略的有效性,接着在不同复杂程度的地图开展MSESO与其他算法的寻路性能对比实验,验证改进算法的优越性。消融实验结果显示,MSESO提出的改进策略均能有效地提升路径规划性能;对比实验结果显示,MSESO的平均路径长度、路径长度方差、平均迭代次数均优于对照组算法,验证了MSESO在路径规划中的鲁棒性和优越性。 展开更多
关键词 路径规划 蛇优化器 佳点集 振荡因子 自适应精英反向学习
下载PDF
基于精英引导的改进哈里斯鹰优化算法
11
作者 李雨恒 高尚 孟祥宇 《计算机工程与科学》 CSCD 北大核心 2024年第2期363-373,共11页
针对哈里斯鹰优化算法(HHO)易陷入局部最优和收敛速度慢的问题,提出一种基于精英引导的改进哈里斯鹰优化算法(EHHO)。首先,引入精英反向学习,以精英中心为对称中心进行反向学习来优化种群结构,增强算法跳出局部最优的能力;其次,引入精... 针对哈里斯鹰优化算法(HHO)易陷入局部最优和收敛速度慢的问题,提出一种基于精英引导的改进哈里斯鹰优化算法(EHHO)。首先,引入精英反向学习,以精英中心为对称中心进行反向学习来优化种群结构,增强算法跳出局部最优的能力;其次,引入精英演化策略,以精英个体为主体进行基于高斯随机突变的演化来提升种群质量,加快算法收敛速度;最后,引入自适应机制,动态调整精英演化策略中2种演化方式的选择概率,以提升算法稳定性。为验证改进算法的有效性,选取15个基准函数进行仿真实验。实验结果表明,改进算法在寻优性能和鲁棒性上均有明显提升,在优化算法中具有一定竞争力。 展开更多
关键词 哈里斯鹰优化算法 精英反向学习 精英演化策略 高斯随机突变 自适应机制
下载PDF
基于振动信号与深度学习的电力变压器故障诊断方法
12
作者 李浩 魏繁荣 +1 位作者 王浩 李旭东 《电工电能新技术》 CSCD 北大核心 2024年第10期1-12,共12页
针对当前电力变压器机械故障实时诊断准确率较低的问题,本文提出了一种基于振动信号与深度学习的电力变压器故障诊断方法。首先针对电力变压器箱体表面振动信号采用改进自适应噪声完备经验模态分解(ICEEMDAN)对其进行分解以获取重构信号... 针对当前电力变压器机械故障实时诊断准确率较低的问题,本文提出了一种基于振动信号与深度学习的电力变压器故障诊断方法。首先针对电力变压器箱体表面振动信号采用改进自适应噪声完备经验模态分解(ICEEMDAN)对其进行分解以获取重构信号,并引入模糊熵值构建振动特征向量。然后以卷积神经网络-双向门控循环单元(CNN-BiGRU)组成基础分类网络以实现特征分类,并引入高效通道注意力机制(ECAM)提升CNN学习性能。最后设计一种基于ICMIC混沌映射、自适应动态扰动和精英反向学习混合改进得到多策略协同优化秃鹰搜索(MSCOBES)算法,并将改进后的算法应用于实现CNN-BiGRU的超参数寻优,从而得到基于MSCOBES-CNN-BiGRU-ECAM的电力变压器故障诊断优化模型。在实验中对于试验变压器的机械故障进行诊断,实验结果表明本文所提出的方法对于电力变压器不同类型的机械故障的诊断准确率可达99.4%。 展开更多
关键词 电力变压器 故障诊断 ICEEMDAN CNN-BiGRU MSCOBES ICMIC混沌映射 自适应动态扰动 精英反向学习
下载PDF
基于改进粒子群算法的海流环境下无人水面艇路径规划 被引量:2
13
作者 白响恩 孙广志 徐笑锋 《上海海事大学学报》 北大核心 2023年第4期1-7,共7页
针对海流环境下无人水面艇(unmanned surface vessel,USV)的多目标路径规划问题,构建USV的多目标路径规划模型,并提出一种改进的粒子群(particle swarm optimization,PSO)算法。采用自适应惯性权重来平衡算法的全局和局部搜索能力,避免... 针对海流环境下无人水面艇(unmanned surface vessel,USV)的多目标路径规划问题,构建USV的多目标路径规划模型,并提出一种改进的粒子群(particle swarm optimization,PSO)算法。采用自适应惯性权重来平衡算法的全局和局部搜索能力,避免算法过早收敛;引入精英反向学习策略提升算法跳出局部最优解的能力。仿真结果表明,改进的算法具有更好的寻优能力和鲁棒性,能够有效解决海流环境下USV的路径规划问题。 展开更多
关键词 无人水面艇(USV) 路径规划 自适应方法 精英反向学习 粒子群(PSO)算法
下载PDF
基于边界自适应技术的精英交互学习粒子群算法 被引量:1
14
作者 徐杰 周新志 《计算机科学》 CSCD 北大核心 2023年第11期210-219,共10页
粒子群优化(PSO)算法依靠粒子之间的合作行为,使其在解决诸多优化问题上显示出极大的智能。然而,由于寻优机制,粒子很容易突破可行域的边界限制,若能使该行为在寻优过程中具有明确的指导意义将有助于提高算法的优化性能;更关键的是,原... 粒子群优化(PSO)算法依靠粒子之间的合作行为,使其在解决诸多优化问题上显示出极大的智能。然而,由于寻优机制,粒子很容易突破可行域的边界限制,若能使该行为在寻优过程中具有明确的指导意义将有助于提高算法的优化性能;更关键的是,原始粒子群优化算法中粒子的学习对象主要集中在全局最佳粒子上,这种更新机制无疑加速了种群多样性的损失,并使种群倾向于陷入局部最优。为了进一步提高求解复杂问题时的种群多样性和收敛精度,提出了一种基于边界自适应技术的精英交互学习粒子群算法(A-EIPSO)。该算法首先在原有的PSO算法中引入了新的边界处理技术,根据越界粒子的历史位置信息和越界距离自适应地赋予粒子在解空间内的分布特征;接着在多种群技术的基础上设计了一种精英学习策略来促进子群间社会信息的交换,并由精英粒子代替全局最佳粒子指导各子群内粒子的优化行为。实验结果表明,在大多数情况下,自适应处理技术保证粒子在搜索空间内实现均匀探索的同时显著提升了PSO算法的性能。此外,还将A-EIPSO在CEC2017基准测试套件上与5种先进的粒子群变体算法及2种主流的进化算法进行了比较。结果表明,A-EIPSO在不同类型函数上均表现出了优越的性能,改进了大多数优化问题的收敛精度,优于其他代表性的PSO变体算法和进化算法。 展开更多
关键词 粒子群优化算法 自适应策略 边界处理技术 多种群 精英交互学习
下载PDF
混沌精英池协同教与学改进的ChOA及其应用 被引量:2
15
作者 罗仕杭 何庆 《计算机工程与应用》 CSCD 北大核心 2023年第6期299-309,共11页
针对黑猩猩优化算法存在全局搜索能力弱、寻优精度低、收敛速度慢等问题,提出一种混沌精英池协同教与学改进的黑猩猩优化算法(chimp optimization algorithm improved by the elite chaos pool collaborative teaching-learning,ECTChOA... 针对黑猩猩优化算法存在全局搜索能力弱、寻优精度低、收敛速度慢等问题,提出一种混沌精英池协同教与学改进的黑猩猩优化算法(chimp optimization algorithm improved by the elite chaos pool collaborative teaching-learning,ECTChOA)。采用混沌精英池策略生成初始种群,增强初始解的质量和种群的多样性,为算法全局寻优奠定基础;引入自适应振荡因子平衡ChOA的全局探索和局部开发能力;结合教与学优化算法的教学阶段和粒子群优化算法的个体记忆思想优化种群位置更新过程,提高算法的寻优精度和收敛速度。仿真实验将ECTChOA与标准ChOA、其他元启发式优化算法和最新改进ChOA在12个基准测试函数下进行寻优对比,实验结果与Wilcoxon秩和检验p值结果均表明所提改进算法具有更高搜索精度、更快的收敛速度和更好的鲁棒性。另外,将ECTChOA应用于机械工程设计案例中,进一步验证ECTChOA在实际工程问题中的可行性和适用性。 展开更多
关键词 黑猩猩优化算法 混沌精英池 教与学优化算法 粒子群优化算法 自适应振荡因子 机械工程设计
下载PDF
精英反向学习t分布饥饿游戏搜索算法 被引量:1
16
作者 徐亦凤 刘升 +1 位作者 张伟康 刘宇凇 《计算机仿真》 北大核心 2023年第6期425-434,共10页
饥饿游戏搜索算法相较于传统的群智能优化算法,具有较好的鲁棒性和寻优能力,但仍存在易陷入局部最优、收敛速度慢等缺陷。为进一步提高饥饿游戏搜索算法的寻优性能,提出精英反向学习t分布饥饿游戏搜索算法(Elite Opposition-Based Learn... 饥饿游戏搜索算法相较于传统的群智能优化算法,具有较好的鲁棒性和寻优能力,但仍存在易陷入局部最优、收敛速度慢等缺陷。为进一步提高饥饿游戏搜索算法的寻优性能,提出精英反向学习t分布饥饿游戏搜索算法(Elite Opposition-Based Learning andt-Distribution Hunger Games Search Algorithm, EtHGS)。利用精英反向学习策略提高初始化种群多样性并且提高收敛速度,同时引入动态概率t分布自适应策略来平衡算法的全局探索和局部开发的能力。通过与饥饿游戏搜索算法(Hunger Games Search Algorithm, HGS)、哈里斯鹰算法(Harris Hawks Optimization, HHO)、黏菌算法(Slime Mould Algorithm, SMA)、精英反向黄金正弦鲸鱼算法(Elite Opposition-Based Golden-Sine Whale Optimization Algorithm, EGoldenSWOA)在多个单模态、多模态和高维测试函数之间进行寻优对比实验,结果表明,所提出的EtHGS算法具有较快收敛速度、较高求解精度以及较强的全局收敛能力。 展开更多
关键词 饥饿游戏搜索算法 精英反向学习 分布自适应 高维优化
下载PDF
改进麻雀搜索算法及其在Hammerstein系统辨识中的应用 被引量:1
17
作者 王德凯 江善和 邢翔宇 《安庆师范大学学报(自然科学版)》 2023年第3期74-82,共9页
麻雀搜索算法是一种基于麻雀捕食与反捕食行为的新型群体智能优化算法。本文针对此算法后期容易陷入局部最优的问题,提出了基于混沌扰动和精英反向学习策略的改进麻雀搜索算法。该算法通过加入自适应权重策略平衡算法的全局探索和局部... 麻雀搜索算法是一种基于麻雀捕食与反捕食行为的新型群体智能优化算法。本文针对此算法后期容易陷入局部最优的问题,提出了基于混沌扰动和精英反向学习策略的改进麻雀搜索算法。该算法通过加入自适应权重策略平衡算法的全局探索和局部挖掘能力,融入改进的Tent混沌初始化种群以提升初始解的质量,在发现者位置更新时引入精英反向学习策略,从而增加发现者的多样性。此外,在算法进入停滞状态时使用混沌扰动以产生新解,使算法拥有跳出局部最优的能力,从而提高了算法的全局搜索能力。11个基准测试函数的仿真结果表明,与其他算法相比ISSA算法在迭代速度、寻优精度和稳定性上更具优势。最后,将ISSA算法应用于Hammerstein系统的辨识问题,验证了该算法的有效性和可靠性。 展开更多
关键词 群体智能 麻雀搜索算法 精英反向学习 自适应权重 混沌扰动
下载PDF
带自适应精英扰动及惯性权重的反向粒子群优化算法 被引量:24
18
作者 董文永 康岚兰 +1 位作者 刘宇航 李康顺 《通信学报》 EI CSCD 北大核心 2016年第12期1-10,共10页
针对反向粒子群优化算法存在的易陷入局部最优、计算开销大等问题,提出了一种带自适应精英粒子变异及非线性惯性权重的反向粒子群优化算法(OPSO-AEM&NIW),来克服该算法的不足。OPSO-AEM&NIW算法在一般性反向学习方法的基础上,... 针对反向粒子群优化算法存在的易陷入局部最优、计算开销大等问题,提出了一种带自适应精英粒子变异及非线性惯性权重的反向粒子群优化算法(OPSO-AEM&NIW),来克服该算法的不足。OPSO-AEM&NIW算法在一般性反向学习方法的基础上,利用粒子适应度比重等信息,引入了非线性的自适应惯性权重(NIW)调整各个粒子的活跃程度,继而加速算法的收敛过程。为避免粒子陷入局部最优解而导致搜索停滞现象的发生,提出了自适应精英变异策略(AEM)来增大搜索范围,结合精英粒子的反向搜索能力,达到跳出局部最优解的目的。上述2种机制的结合,可以有效克服反向粒子群算法的探索与开发的矛盾。实验结果表明,与主流反向粒子群优化算法相比,OPSO-AEM&NIW算法无论是在计算精度还是计算开销上均具有较强的竞争能力。 展开更多
关键词 一般性反向学习 粒子群优化 自适应精英变异 非线性惯性权重
下载PDF
无惯性自适应精英变异反向粒子群优化算法 被引量:14
19
作者 康岚兰 董文永 +1 位作者 宋婉娟 李康顺 《通信学报》 EI CSCD 北大核心 2017年第8期66-78,共13页
为解决反向粒子群优化算法计算开销大、易陷入局部最优的不足,提出一种无惯性的自适应精英变异反向粒子群优化算法(NOPSO)。NOPSO算法在反向学习方法的基础上,广泛获取环境信息,提出一种无惯性的速度(NIV)更新式来引导粒子飞行轨迹,从... 为解决反向粒子群优化算法计算开销大、易陷入局部最优的不足,提出一种无惯性的自适应精英变异反向粒子群优化算法(NOPSO)。NOPSO算法在反向学习方法的基础上,广泛获取环境信息,提出一种无惯性的速度(NIV)更新式来引导粒子飞行轨迹,从而有效加快算法的收敛过程。同时,为避免早熟现象的发生,引入了自适应精英变异策略(AEM),该策略在扩大种群搜索范围的同时,帮助粒子跳出局部最优。NIV与AEM这2种机制的结合,有效增加了种群多样性,平衡了反向粒子群算法中探索与开发的矛盾。实验结果表明,与主流反向粒子群优化算法相比,NOPSO算法无论是在计算精度还是计算开销上均具有较强的竞争能力。 展开更多
关键词 无惯性速度更新式 一般性反向学习 自适应精英变异 粒子群优化
下载PDF
自适应精英反向学习共生生物搜索算法 被引量:16
20
作者 周虎 赵辉 +1 位作者 周欢 王骁飞 《计算机工程与应用》 CSCD 北大核心 2016年第19期161-166,共6页
针对共生生物搜索算法在求解高维复杂问题时存在过早收敛,求解精度不高及后期搜索迟滞等问题,结合自适应思想,利用不同差分扰动项和精英反向学习策略对算法进行改进,得到一种改进的共生生物搜索算法。对14个标准测试函数的仿真实验结果... 针对共生生物搜索算法在求解高维复杂问题时存在过早收敛,求解精度不高及后期搜索迟滞等问题,结合自适应思想,利用不同差分扰动项和精英反向学习策略对算法进行改进,得到一种改进的共生生物搜索算法。对14个标准测试函数的仿真实验结果进行分析,相比于原算法和其他三种目前流行的算法,改进算法在收敛速度和求解精度方面均具有明显的优势,寻优能力更强。 展开更多
关键词 共生生物搜索算法 差分扰动 自适应 精英反向学习
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部