期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Alternative Fuzzy Cluster Segmentation of Remote Sensing Images Based on Adaptive Genetic Algorithm 被引量:1
1
作者 WANG Jing TANG Jilong +3 位作者 LIU Jibin REN Chunying LIU Xiangnan FENG Jiang 《Chinese Geographical Science》 SCIE CSCD 2009年第1期83-88,共6页
Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich textur... Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich texture details of remote sensing images. We proposed a new segmentation method based on Adaptive Genetic Algorithm(AGA) and Alternative Fuzzy C-Means(AFCM) . Segmentation thresholds were identified by AGA. Then the image was segmented by AFCM. The results indicate that the precision and the speed of segmentation have been greatly increased,and the accuracy of threshold selection is much higher compared with traditional Otsu and Fuzzy C-Means(FCM) segmentation methods. The segmentation results also show that multi-thresholds segmentation has been achieved by combining AGA with AFCM. 展开更多
关键词 adaptive Genetic Algorithm (AGA) Alternative fuzzy c-means afcm image segmentation remote sensing
下载PDF
Research on Wind Power Prediction Modeling Based on Adaptive Feature Entropy Fuzzy Clustering
2
作者 HUANG Haixin KONG Chang 《沈阳理工大学学报》 CAS 2014年第4期75-80,共6页
Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia ar... Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly. 展开更多
关键词 fuzzy c-means clustering adaptive feature weighted ENTROPY wind power prediction
下载PDF
Adaptive Image Digital Watermarking with DCT and FCM 被引量:4
3
作者 SU Liyun MA Hong TANG Shifu 《Wuhan University Journal of Natural Sciences》 CAS 2006年第6期1657-1660,共4页
A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visua... A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visual system (HVS). One is suited for embedding a digital watermark, the other is not. So the appropriate blocks in an image are selected to embed the watermark. The wetermark is embedded in the middle-frequency part of the host image in conjunction with HVS and discrete cosine transform (DCT). The maximal watermark strength is fixed according to the frequency masking. In the same time, for the good performance, the watermark is modulated into a fractal modulation array. The simulation results show that we can remarkably extract the hiding watermark and the algorithm can achieve good robustness with common signal distortion or geometric distortion and the quality of the watermarked image is guaranteed. 展开更多
关键词 adaptive watermarking fractal modulation wavelet transform fuzzy c-means clustering (FCM) human visual system (HVS) discrete cosine transform (DCT)
下载PDF
基于CK-Hough联合算法的人体微多普勒频率估计
4
作者 陈雨馨 彭意群 +1 位作者 柳润金 丁一鹏 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期3329-3341,共13页
为了准确地从雷达回波信号中提取运动目标特定部位的微多普勒频率,本文提出一种新颖的CKHough算法,该算法有效地结合了聚类分析和K近邻-霍夫(KNN-Hough)算法。首先,通过短时傅里叶变换获取雷达回波信号的时频谱图;其次,利用自适应模糊C... 为了准确地从雷达回波信号中提取运动目标特定部位的微多普勒频率,本文提出一种新颖的CKHough算法,该算法有效地结合了聚类分析和K近邻-霍夫(KNN-Hough)算法。首先,通过短时傅里叶变换获取雷达回波信号的时频谱图;其次,利用自适应模糊C均值算法对时频图进行聚类分析,在这一过程中,本文采用数据预处理技术自适应调整聚类类别数c以适应多样化应用场景,从而获得人体各散射部位的频域范围,有效地抑制了分量间的相互干扰;第三,通过改进度量函数的K近邻算法增强相邻时刻聚类结果的相关性,拟合各部位的瞬时频率曲线;最后,采用霍夫变换动态调整度量函数中权值μ的取值,得到目标微多普勒频率的精确估计结果。研究结果表明:本文提出的CK-Hough提取了直/曲线行走场景下人类目标四肢的微多普勒频率;与传统的峰值搜索算法、线性预测维特比算法以及基于Bezier-Hough模型的频率拟合算法相比,本文提出的CK-Hough算法在直线行走实验场景下,总频率的估计误差率分别降低了40.40%、45.47%和26.16%;在曲线行走实验场景下,其估计误差率分别降低了58.35%、68.35%和41.65%。 展开更多
关键词 微多普勒频率提取 时频分析 自适应模糊C均值聚类 K近邻 霍夫变换
下载PDF
基于AFCM-SVM的滚动轴承退化状态评估与剩余寿命预测 被引量:4
5
作者 吕明珠 苏晓明 +1 位作者 刘世勋 陈长征 《组合机床与自动化加工技术》 北大核心 2020年第3期65-69,共5页
针对支持向量机模型状态数需要人为设定的不足,提出了一种基于自适应模糊C均值-支持向量机(AFCM-SVM)的滚动轴承退化状态评估与剩余寿命预测方法。该算法采用相对特征建立敏感特征数据集,利用聚类评价指标构造自适应函数,实现了模型聚... 针对支持向量机模型状态数需要人为设定的不足,提出了一种基于自适应模糊C均值-支持向量机(AFCM-SVM)的滚动轴承退化状态评估与剩余寿命预测方法。该算法采用相对特征建立敏感特征数据集,利用聚类评价指标构造自适应函数,实现了模型聚类结果的自动更新,获得了轴承运行过程中的最佳状态数;基于AFCM-SVM模型与各个运行状态的一一对应关系,确定轴承在不同退化状态下的时间间隔,实现轴承的健康等级评估与寿命预测。根据美国NSFI/UCR智能维护中心提供的滚动轴承全寿命数据对所提算法进行了验证。结果表明,不受轴承个体差异的影响,AFCM-SVM能有效实现自动聚类,识别结果符合轴承退化演变规律;与分层狄利克雷(HDP)和K-means算法相比,AFCM-SVM具有更快的运算速度和更准确的辨识能力。 展开更多
关键词 自适应模糊C均值-支持向量机(afcm-SVM) 滚动轴承 退化状态评估 剩余寿命预测
下载PDF
Diagnosis of Neem Leaf Diseases Using Fuzzy-HOBINM and ANFIS Algorithms
6
作者 K.K.Thyagharajan I.Kiruba Raji 《Computers, Materials & Continua》 SCIE EI 2021年第11期2061-2076,共16页
This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth o... This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth of neem leaf to the UK,USA,UAE,and Europe in the form of dried leaves and powder,both of which help reduce diabetesrelated issues,cardiovascular problems,and eye disorders.Diagnosing neem leaf disease is difficult through visual interpretation,owing to similarity in their color and texture patterns.The most common diseases include bacterial blight,Colletotrichum and Alternaria leaf spot,blight,damping-off,powdery mildew,Pseudocercospora leaf spot,leaf web blight,and seedling wilt.However,traditional color and texture algorithms fail to identify leaf diseases due to irregular lumps and surfaces,and rough ridges,as the classification time involved takes as long as a week.The proposed F-HOBINM algorithm recognizes the leaf intensity through the leaky capacitor,and uses subjective intensity and physical stimulus to interpret the diagnosis.Further,the processed leaf images from the HOBINM algorithm are applied to the ANFIS classifier to identify neem leaf diseases.The experimental results show 92.18%accuracy from a database of 1,462 neem leaves. 展开更多
关键词 Higher-order neural network fuzzy c-means clustering Mamdani fuzzy inference system adaptive neuro-fuzzy classifier
下载PDF
井下基于动态指纹更新的指纹定位算法研究 被引量:3
7
作者 崔丽珍 王巧利 +1 位作者 郭倩倩 杨勇 《系统仿真学报》 CAS CSCD 北大核心 2021年第4期818-824,共7页
围绕煤矿井下环境特点,提出一种基于动态指纹更新的指纹定位算法。该算法运用FCM(Fuzzy C-Means Clustering)按信号分布特征划分井下定位区域,在各个子区域建立训练学习模型。在FCM算法基础上提出一种基于移动用户位置的HMM(Hidden Mark... 围绕煤矿井下环境特点,提出一种基于动态指纹更新的指纹定位算法。该算法运用FCM(Fuzzy C-Means Clustering)按信号分布特征划分井下定位区域,在各个子区域建立训练学习模型。在FCM算法基础上提出一种基于移动用户位置的HMM(Hidden Markov Model)运动信息序列模型,通过用户无意识地参与RSSI(Received Signal Strength Indication)序列的采集,实现指纹数据库的动态更新。运用具有自学习能力的ANFIS(Adaptive Network-based Fuzzy Inference System)算法定位未知节点。实验结果表明:所提的井下基于动态指纹更新的指纹定位算法定位精度可达2.6 m,满足煤矿井下巷道的实时定位需求。 展开更多
关键词 煤矿井下 指纹匹配定位 fuzzy c-means clustering算法 区域划分 指纹库更新 hidden Markov model运动轨迹模型 adaptive network-based fuzzy inference system定位模型 定位精度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部