期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
APPLICATION STUDY ON ADAPTIVE NEURAL FUZZY INFERENCE MODEL IN COMPLEX SOCIAL-TECHNICAL SYSTEM
1
作者 冯绍红 李东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第4期393-399,共7页
The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re... The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields. 展开更多
关键词 complex adaptive system adaptive neural fuzzy inference system (ANFIS) complex social-technical system organizational efficiency
下载PDF
Adaptive Backstepping Output Feedback Control for SISO Nonlinear System Using Fuzzy Neural Networks 被引量:2
2
作者 Shao-Cheng Tong Yong-Ming Li 《International Journal of Automation and computing》 EI 2009年第2期145-153,共9页
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the ... In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach. 展开更多
关键词 Nonlinear systems backstepping control adaptive fuzzy neural networks control state observer output feedback control.
下载PDF
Development of an electrode intelligent design system based on adaptive fuzzy neural network and genetic algorithm
3
作者 Huang Jun Xu Yuelan +1 位作者 Wang Luyuan Wang Kehong 《China Welding》 EI CAS 2014年第2期62-66,共5页
The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical propertie... The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical properties of deposited metals directly according to the components of coating on the electrodes. In this paper an electrode intelligent design system is developed by means of fuzzy neural network technology and genetic algorithm,, dynamic link library, object linking and embedding and multithreading. The front-end application and customer interface of the system is realized by using visual C ++ program language and taking SQL Server 2000 as background database. It realizes series functions including automatic design of electrode formula, intelligent prediction of electrode properties, inquiry of electrode information, output of process report based on normalized template and electronic storage and search of relative files. 展开更多
关键词 electrode design system adaptive fuzzy neural network genetic algorithm object linking and embedding
下载PDF
Temperature modeling and control of Direct Methanol Fuel Cell based on adaptive neural fuzzy technology
4
作者 戚志东 Zhu Xinjian Cao Guangyi 《High Technology Letters》 EI CAS 2006年第4期421-426,共6页
Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an A... Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results. 展开更多
关键词 direct methanol fuel cell (DMFC) adaptive neural fuzzy inference technology fuzzy genetic algorithms (FGA)
下载PDF
Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control 被引量:11
5
作者 张友旺 桂卫华 《Journal of Central South University of Technology》 EI 2008年第2期256-263,共8页
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe... Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively. 展开更多
关键词 electro-hydraulic servo system adaptive dynamic recurrent fuzzy neural network(ADRFNN) gain adaptive slidingmode variable structure control(GASMVSC) secondary uncertainty
下载PDF
Blockchain technology‑based FinTech banking sector involvement using adaptive neuro‑fuzzy‑based K‑nearest neighbors algorithm 被引量:1
6
作者 Husam Rjoub Tomiwa Sunday Adebayo Dervis Kirikkaleli 《Financial Innovation》 2023年第1期1765-1787,共23页
The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is l... The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is lacking in the traditional financial sector.The use of technology to automate financial services is becoming more important for economic organizations and industries because the digital age has seen a period of transition in terms of consumers and personalization.The future of FinTech will be shaped by technologies like the Internet of Things,blockchain,and artificial intelligence.The involvement of these platforms in financial services is a major concern for global business growth.FinTech is becoming more popular with customers because of such benefits.FinTech has driven a fundamental change within the financial services industry,placing the client at the center of everything.Protection has become a primary focus since data are a component of FinTech transactions.The task of consolidating research reports for consensus is very manual,as there is no standardized format.Although existing research has proposed certain methods,they have certain drawbacks in FinTech payment systems(including cryptocurrencies),credit markets(including peer-to-peer lending),and insurance systems.This paper implements blockchainbased financial technology for the banking sector to overcome these transition issues.In this study,we have proposed an adaptive neuro-fuzzy-based K-nearest neighbors’algorithm.The chaotic improved foraging optimization algorithm is used to optimize the proposed method.The rolling window autoregressive lag modeling approach analyzes FinTech growth.The proposed algorithm is compared with existing approaches to demonstrate its efficiency.The findings showed that it achieved 91%accuracy,90%privacy,96%robustness,and 25%cyber-risk performance.Compared with traditional approaches,the recommended strategy will be more convenient,safe,and effective in the transition period. 展开更多
关键词 FinTech Economic growth Blockchain technology adaptive neural fuzzy based KNN algorithm Rolling window autoregressive lag modelling
下载PDF
Adaptive inverse control of air supply flow for proton exchange membrane fuel cell systems 被引量:2
7
作者 李春华 朱新坚 +2 位作者 隋升 胡万起 胡鸣若 《Journal of Shanghai University(English Edition)》 CAS 2009年第6期474-480,共7页
To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) s... To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper. The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances. Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy. 展开更多
关键词 proton exchange membrane fuel cell (PEMFC) air supply system COMPRESSOR adaptive inverse control (AIC) recurrent fuzzy neural network (RFNN)
下载PDF
Novel intelligent reasoning system for tool wear prediction and parameter optimization in intelligent milling
8
作者 Long-Hua Xu Chuan-Zhen Huang +3 位作者 Zhen Wang Han-Lian Liu Shui-Quan Huang Jun Wang 《Advances in Manufacturing》 SCIE EI CAS CSCD 2024年第1期76-93,共18页
Accurate intelligent reasoning systems are vital for intelligent manufacturing.In this study,a new intelligent reasoning system was developed for milling processes to accurately predict tool wear and dynamically optim... Accurate intelligent reasoning systems are vital for intelligent manufacturing.In this study,a new intelligent reasoning system was developed for milling processes to accurately predict tool wear and dynamically optimize machining parameters.The developed system consists of a self-learning algorithm with an improved particle swarm optimization(IPSO)learning algorithm,prediction model determined by an improved case-based reasoning(ICBR)method,and optimization model containing an improved adaptive neural fuzzy inference system(IANFIS)and IPSO.Experimental results showed that the IPSO algorithm exhibited the best global convergence performance.The ICBR method was observed to have a better performance in predicting tool wear than standard CBR methods.The IANFIS model,in combination with IPSO,enabled the optimization of multiple objectives,thus generating optimal milling parameters.This paper offers a practical approach to developing accurate intelligent reasoning systems for sustainable and intelligent manufacturing. 展开更多
关键词 Improved particle swarm optimization(IPSO)algorithm Improved case-based reasoning(ICBR)method adaptive neural fuzzy inference system(ANFIS)model Tool wear prediction Intelligent manufacturing
原文传递
Navigation of Non-holonomic Mobile Robot Using Neuro-fuzzy Logic with Integrated Safe Boundary Algorithm 被引量:4
9
作者 A. Mallikarjuna Rao K. Ramji +2 位作者 B.S.K. Sundara Siva Rao V. Vasua C. Puneeth 《International Journal of Automation and computing》 EI CSCD 2017年第3期285-294,共10页
In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, n... In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, neural network and adaptive neurofuzzy inference system(ANFIS) controller with safe boundary algorithm. In this method of target seeking behaviour, the obstacle avoidance at every instant improves the performance of robot in navigation approach. The inputs to the controller are the signals from various sensors fixed at front face, left and right face of the AMR. The output signal from controller regulates the angular velocity of both front power wheels of the AMR. The shortest path is identified using fuzzy, neural network and ANFIS techniques with integrated safe boundary algorithm and the predicted results are validated with experimentation. The experimental result has proven that ANFIS with safe boundary algorithm yields better performance in navigation, in particular with curved/irregular obstacles. 展开更多
关键词 Robotics autonomous mobile robot(AMR) navigation fuzzy logic neural networks adaptive neuro-fuzzy inference system(ANFIS) safe boundary algorithm
原文传递
Expert diagnostic system for detection of hypertension and diabetes mellitususing discrete wavelet decomposition of photoplethysmogram signal andmachine learning technique
10
作者 Muzaffar khan Bikesh Kumar Singh Neelamshobha Nirala 《Medicine in Novel Technology and Devices》 2023年第3期53-60,共8页
Hypertension is a leading risk factor for cardiovascular disease (CVD) and the overlap of diabetes mellitus (DM)with hypertension can lead to severe complications. There is a need for early diagnosis and risk stratifi... Hypertension is a leading risk factor for cardiovascular disease (CVD) and the overlap of diabetes mellitus (DM)with hypertension can lead to severe complications. There is a need for early diagnosis and risk stratification toimplement an overall risk management strategy. Presently, the conventional method is not suitable for large-scalescreening. The primary aim of this study is to develop an automated diagnostic system that uses Photoplethysmogram (PPG) signals for the non-invasive diagnosis of hypertension and DM-II. The proposed model usesa statistical feature extracted by decomposing the PPG signal up to level 11 into a sub-band using Discrete wavelettransform (DWT), and a variety of classifiers are used for the classification of hypertension and detection of DM-IIpatients. Three feature selection techniques used are Spearman correlation, ReliefF and Minimum RedundancyMaximum Relevance (mRMR) to select 20 top features out of 130 features using correlation with systole bloodpressure (SBP), diastole blood pressure (DBP) values and D-II. The highest accuracy attained by the Adaptiveneural fuzzy system (ANFIS) for classification categories such as normal (NT) vs prehypertension(PHT), NT vs.hypertension type 1 (HT-I), NT vs hypertension type 2 (HT-II) in terms of F1 score are 92.%, 98.5%, 98.3% (SBP)and 83.1%, 95.6%, 86.8% (DBP),respectively. The accuracy achieved by the adaptive-network-based fuzzyinference system (ANFIS) for the classification of normal (non-diabetic) vs. diabetic patients is 99.1%. The hybridlearning algorithm-based classifier achieved higher accuracy for hypertension risk stratification as compared tothe hard computing classifier, which requires parameter tuning and DWT decomposition is robust to the noisysignal, overcoming the limitation of the morphological feature-based model. 展开更多
关键词 HYPERTENSION Diabetes mellitus-II Photoplethysmogram Multi-layer perceptron adaptive neural fuzzy inference system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部