This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher...This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.展开更多
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe...Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.展开更多
This paper presents an output feedback design approach based on the adaptive control scheme developed for nonlinearly parameterized systems,to achieve global output regulation for a class of nonlinear systems in outpu...This paper presents an output feedback design approach based on the adaptive control scheme developed for nonlinearly parameterized systems,to achieve global output regulation for a class of nonlinear systems in output feedback form.We solve the output regulation problem without the knowledge of the sign and the value of the high frequency gain a priori.It is not necessary to have both the limiting assumptions that the exogenous signal co and the unknown parameter ju belong to a prior known compact set and the high frequency gain has a determinate lower and upper bounds.The effectiveness of the proposed algorithm is shown with the help of an example.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unkn...In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.展开更多
The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is...The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is extended to some extent, and accordingly, the results of global ultimate boundedness for stochastic nonlinear systems are developed. Next, a new design scheme of fuzzy adaptive control is proposed. The advantage of it is that it does not require priori knowledge of virtual control gain function sign, which is usually demanded in many designs. At the same time, the track performance of closed-loop systems is improved by adaptive modifying the estimated error upper bound. By theoretical analysis, the signals of closed-loop systems are globally ultimately bounded in probability and the track error converges to a small residual set around the origin in 4th-power expectation.展开更多
This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed appr...This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist.展开更多
The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum wit...The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum with variable position of the ann. To solve this problem, this paper presents a mathematical model for arm driven inverted pendulum in mid-position configuration and an adaptive gain scheduling linear quadratic regulator control method for the stabilizing the inverted pendulum. The proposed controllers for arm driven inverted pendulum are simulated using MATLAB-SIMULINK and implemented on an experiment system using PIC 18F4431 mieroeontroller. The result of experiment system shows the control performance to be very good in a wide range stabilization of the arm position.展开更多
This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a sing...This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.展开更多
AIM:To quantitatively examine the impacts of an easyto-measure parameter-weight gain-on metabolic syndrome development among middle-aged adults. METHODS:We conducted a five-year interval observational study.A total of...AIM:To quantitatively examine the impacts of an easyto-measure parameter-weight gain-on metabolic syndrome development among middle-aged adults. METHODS:We conducted a five-year interval observational study.A total of 1384 middle-aged adults not meeting metabolic syndrome(MetS)criteria at the initial screening were included in our analysis.Baseline data such as MetS-components and lifestyle factors were collected in 2002.Body weight and MetS-components were measured in both 2002 and 2007.Participants were classified according to proximal quartiles of weight gain(WG)in percentages(%WG≤1%,1%< %WG≤5%,5%<%WG≤10%and%WG>10%, defined as:control,mild-WG,moderate-WG and severe-WG groups,respectively)at the end of the follow-up. Multivariate models were used to assess the association between MetS outcome and excessive WG in the total population,as well as in both genders. RESULTS:In total,175(12.6%)participants fulfilled MetS criteria within five years.In comparison to the control group,mild-WG adults had an insignificant risk for MetS development while adults having moderate-WG had a 3.0-fold increased risk for progression to MetS [95%confidence interval(CI),1.8-5.1],and this risk was increased 5.4-fold(95%CI,3.0-9.7)in subjects having severe-WG.For females having moderate-and severe-WG,the risk for developing MetS was 3.6(95% CI,1.03-12.4)and 5.5(95%CI,1.4-21.4),respectively. For males having moderate-and severe-WG,the odds ratio for MetS outcome was respectively 3.0(95%CI, 1.6-5.5)and 5.2(95%CI,2.6-10.2). CONCLUSION:For early-middle-aged healthy adults with a five-year weight gain over 5%,the severity of weight gain is related to the risk for developing metabolic syndrome.展开更多
A new design scheme of stable adaptive fuzzy control for a class of nonlinear systems is proposed in this paper.The T-S fuzzy model is employed to represent the systems.First,the concept of the so-called parallel dist...A new design scheme of stable adaptive fuzzy control for a class of nonlinear systems is proposed in this paper.The T-S fuzzy model is employed to represent the systems.First,the concept of the so-called parallel distributed compensation (PDC) and linear matrix inequality (LMI) approach are employed to design the state feedback controller without considering the error caused by fuzzy modeling.Sufficient conditions with respect to decay rate α are derived in the sense of Lyapunov asymptotic stability.Finally,the error caused by fuzzy modeling is considered and the input-to-state stable (ISS) method is used to design the adaptive compensation term to reduce the effect of the modeling error.By the small-gain theorem,the resulting closed-loop system is proved to be input-to-state stable.Theoretical analysis verifies that the state converges to zero and all signals of the closed-loop systems are bounded.The effectiveness of the proposed controller design methodology is demonstrated through numerical simulation on the chaotic Henon system.展开更多
An adaptive data transmission scheme based on variable spreading gain (VSG) is studied in cellular CDMA network in presence of soft handoff (HO). The processing gain is varied according to traffic intensity meet-ing a...An adaptive data transmission scheme based on variable spreading gain (VSG) is studied in cellular CDMA network in presence of soft handoff (HO). The processing gain is varied according to traffic intensity meet-ing a requirement on data bit error rate (BER). The overall performance improvement due to processing gain adaptation and soft HO is evaluated and compared with a fixed rate system. The influence of soft HO pa-rameters on rate adaptation and throughput and delay performance of data is indicated. Further truncated automatic repeat request (T-ARQ) is used in link layer to improve the performance of delay sensitive ser-vices. The joint impact of VSG based transmission in presence of soft handoff at physical layer and T-ARQ at link layer is evaluated. A variable packet size scheme is also studied to meet a constraint on packet loss.展开更多
Cognitive radio is considered as one of the main enablers for provisioning dynamic and flexible spectrum/channel allocation in wireless communications. The reliable data transmission over cognitive radio should employ...Cognitive radio is considered as one of the main enablers for provisioning dynamic and flexible spectrum/channel allocation in wireless communications. The reliable data transmission over cognitive radio should employ modulation, coding etc. and thus the performance of such a new communication system should be realized. In this paper, we provide the performance analysis of adaptive modulation over a cognitive radio system in order to study the potential gain of cognitive radios in terms of spectral efficiency. The results obtained show that the performance gain of cognitive radio in adaptive modulation is remarkable.展开更多
In this paper,by using the well-known high-gain observer design,an update law for the gain and an adaptive estimation of parameters,a new method of fault diagnosis for a class of nonlinear systems is presented.Without...In this paper,by using the well-known high-gain observer design,an update law for the gain and an adaptive estimation of parameters,a new method of fault diagnosis for a class of nonlinear systems is presented.Without resort to any transformation for the parameters,the estimation errors of the states and the parameters are guaranteed to be globally exponentially convergent by a persistent excitation condition.Compared to the existing results,it can be applied to nonlinear systems with nonlinear terms admitting an incremental rate depending on the measured output.A case study further verifies the validity of the proposed research.展开更多
As aging becomes increasingly serious,how to make the life of the elderly more convenient and comfortable has become one of the social problems to be solved urgently.Old residential areas are one of spaces where the e...As aging becomes increasingly serious,how to make the life of the elderly more convenient and comfortable has become one of the social problems to be solved urgently.Old residential areas are one of spaces where the elderly gather.In this paper,the prominent problems in the community space of existing old residential areas that are not conducive to the life of the elderly were analyzed,and corresponding countermeasures to transform the community space were put forward.It is hoped that public space can play its due value and make old residential areas glow with new vitality.展开更多
文摘This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.
基金supported by the National Natural Science Foundation of China(61663030,61663032)the Natural Science Foundation of Jiangxi Province(20142BAB207021)+4 种基金the Foundation of Jiangxi Educational Committee(GJJ150753)the Open Fund of Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province(Nanchang Hangkong University)(TX201404003)the Key Laboratory of Nondestructive Testing(Nanchang Hangkong University)Ministry of Education(ZD29529005)the Reform Project of Degree and Postgraduate Education in Jiangxi(JXYJG-2017-131)
文摘This paper presents an output feedback design approach based on the adaptive control scheme developed for nonlinearly parameterized systems,to achieve global output regulation for a class of nonlinear systems in output feedback form.We solve the output regulation problem without the knowledge of the sign and the value of the high frequency gain a priori.It is not necessary to have both the limiting assumptions that the exogenous signal co and the unknown parameter ju belong to a prior known compact set and the high frequency gain has a determinate lower and upper bounds.The effectiveness of the proposed algorithm is shown with the help of an example.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
基金supported by National Natural Science Foundation of China (No. 61074014)the Outstanding Youth Funds of Liaoning Province (No. 2005219001)Educational Department of Liaoning Province (No. 2006R29, No. 2007T80)
文摘In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of P. R. China (60572070, 60325311, 60534010) Natural Science Foundation of Liaoning Province (20022030)
文摘The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is extended to some extent, and accordingly, the results of global ultimate boundedness for stochastic nonlinear systems are developed. Next, a new design scheme of fuzzy adaptive control is proposed. The advantage of it is that it does not require priori knowledge of virtual control gain function sign, which is usually demanded in many designs. At the same time, the track performance of closed-loop systems is improved by adaptive modifying the estimated error upper bound. By theoretical analysis, the signals of closed-loop systems are globally ultimately bounded in probability and the track error converges to a small residual set around the origin in 4th-power expectation.
基金supported by the National Natural Science Fundation of China(6097401461273083)
文摘This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist.
文摘The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum with variable position of the ann. To solve this problem, this paper presents a mathematical model for arm driven inverted pendulum in mid-position configuration and an adaptive gain scheduling linear quadratic regulator control method for the stabilizing the inverted pendulum. The proposed controllers for arm driven inverted pendulum are simulated using MATLAB-SIMULINK and implemented on an experiment system using PIC 18F4431 mieroeontroller. The result of experiment system shows the control performance to be very good in a wide range stabilization of the arm position.
文摘This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.
文摘AIM:To quantitatively examine the impacts of an easyto-measure parameter-weight gain-on metabolic syndrome development among middle-aged adults. METHODS:We conducted a five-year interval observational study.A total of 1384 middle-aged adults not meeting metabolic syndrome(MetS)criteria at the initial screening were included in our analysis.Baseline data such as MetS-components and lifestyle factors were collected in 2002.Body weight and MetS-components were measured in both 2002 and 2007.Participants were classified according to proximal quartiles of weight gain(WG)in percentages(%WG≤1%,1%< %WG≤5%,5%<%WG≤10%and%WG>10%, defined as:control,mild-WG,moderate-WG and severe-WG groups,respectively)at the end of the follow-up. Multivariate models were used to assess the association between MetS outcome and excessive WG in the total population,as well as in both genders. RESULTS:In total,175(12.6%)participants fulfilled MetS criteria within five years.In comparison to the control group,mild-WG adults had an insignificant risk for MetS development while adults having moderate-WG had a 3.0-fold increased risk for progression to MetS [95%confidence interval(CI),1.8-5.1],and this risk was increased 5.4-fold(95%CI,3.0-9.7)in subjects having severe-WG.For females having moderate-and severe-WG,the risk for developing MetS was 3.6(95% CI,1.03-12.4)and 5.5(95%CI,1.4-21.4),respectively. For males having moderate-and severe-WG,the odds ratio for MetS outcome was respectively 3.0(95%CI, 1.6-5.5)and 5.2(95%CI,2.6-10.2). CONCLUSION:For early-middle-aged healthy adults with a five-year weight gain over 5%,the severity of weight gain is related to the risk for developing metabolic syndrome.
基金supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.07KJB510125,08KJD510008)the Natural Science Foundation of Yancheng Teachers University(No.07YCKL062,08YCKL053)
文摘A new design scheme of stable adaptive fuzzy control for a class of nonlinear systems is proposed in this paper.The T-S fuzzy model is employed to represent the systems.First,the concept of the so-called parallel distributed compensation (PDC) and linear matrix inequality (LMI) approach are employed to design the state feedback controller without considering the error caused by fuzzy modeling.Sufficient conditions with respect to decay rate α are derived in the sense of Lyapunov asymptotic stability.Finally,the error caused by fuzzy modeling is considered and the input-to-state stable (ISS) method is used to design the adaptive compensation term to reduce the effect of the modeling error.By the small-gain theorem,the resulting closed-loop system is proved to be input-to-state stable.Theoretical analysis verifies that the state converges to zero and all signals of the closed-loop systems are bounded.The effectiveness of the proposed controller design methodology is demonstrated through numerical simulation on the chaotic Henon system.
文摘An adaptive data transmission scheme based on variable spreading gain (VSG) is studied in cellular CDMA network in presence of soft handoff (HO). The processing gain is varied according to traffic intensity meet-ing a requirement on data bit error rate (BER). The overall performance improvement due to processing gain adaptation and soft HO is evaluated and compared with a fixed rate system. The influence of soft HO pa-rameters on rate adaptation and throughput and delay performance of data is indicated. Further truncated automatic repeat request (T-ARQ) is used in link layer to improve the performance of delay sensitive ser-vices. The joint impact of VSG based transmission in presence of soft handoff at physical layer and T-ARQ at link layer is evaluated. A variable packet size scheme is also studied to meet a constraint on packet loss.
文摘Cognitive radio is considered as one of the main enablers for provisioning dynamic and flexible spectrum/channel allocation in wireless communications. The reliable data transmission over cognitive radio should employ modulation, coding etc. and thus the performance of such a new communication system should be realized. In this paper, we provide the performance analysis of adaptive modulation over a cognitive radio system in order to study the potential gain of cognitive radios in terms of spectral efficiency. The results obtained show that the performance gain of cognitive radio in adaptive modulation is remarkable.
基金supported by the National Science Foundation of China(No.61074091)the National Science Foundation of Hubei Province(No.2008CDZ046,2008CDZ047)+1 种基金the Scientific Innovation Team Project of Hubei Provincial Department of Education(No.T200809)the Science Foundation of Education Commission of Hubei Province(No.D20091305)
文摘In this paper,by using the well-known high-gain observer design,an update law for the gain and an adaptive estimation of parameters,a new method of fault diagnosis for a class of nonlinear systems is presented.Without resort to any transformation for the parameters,the estimation errors of the states and the parameters are guaranteed to be globally exponentially convergent by a persistent excitation condition.Compared to the existing results,it can be applied to nonlinear systems with nonlinear terms admitting an incremental rate depending on the measured output.A case study further verifies the validity of the proposed research.
基金by the General Project of Natural Science Foundation of Beijing City(8212009)Organized Scientific Research Project of North China University of Technology in 2023(110051360023XN278).
文摘As aging becomes increasingly serious,how to make the life of the elderly more convenient and comfortable has become one of the social problems to be solved urgently.Old residential areas are one of spaces where the elderly gather.In this paper,the prominent problems in the community space of existing old residential areas that are not conducive to the life of the elderly were analyzed,and corresponding countermeasures to transform the community space were put forward.It is hoped that public space can play its due value and make old residential areas glow with new vitality.