The key to narrow-band interference excision in frequency domain is to determine the excision thresh- old in direct-sequence spread-spectrum (DS-SS) systems. The excision threshold is a non-linear function related t...The key to narrow-band interference excision in frequency domain is to determine the excision thresh- old in direct-sequence spread-spectrum (DS-SS) systems. The excision threshold is a non-linear function related to the number and the power of interference, and attempting to get the exact relation of threshold related to the number and the power of interference is almost impossible. The N-sigma algorithm determines the excision threshold using subsection function; however, the excision threshold determined by this method is not exact. A new method to determine the threshold of N-sigma algorithm is proposed. The new method modifies the scale factor N by use of the membership function. The threshold determined by this method is consecutive and smooth, and it is closer to the fact than that of the initial N-sigma algorithm. The GPS signal and single-tone (CW) interference (that is, typical narrow-band interference) are implemented in the simulation, and the results are presented to demonstrate the validity of the new algorithm.展开更多
For the performance issues of satellite transceivers suffering passive intermodulation interference,a novel and effective digital suppression algorithm is presented in this paper.In contrast to analog approaches,digit...For the performance issues of satellite transceivers suffering passive intermodulation interference,a novel and effective digital suppression algorithm is presented in this paper.In contrast to analog approaches,digital passive intermodulation(PIM) suppression approaches can be easily reconfigured and therefore are highly attractive for future satellite communication systems.A simplified model of nonlinear distortion from passive microwave devices is established in consideration of the memory effect.The multiple high-order PIM products falling into the receiving band can be described as a bilinear predictor function.A suppression algorithm based on a bilinear polynomial decorrelated adaptive filter is proposed for baseband digital signal processing.In consideration of the time-varying characteristics of passive intermodulation,this algorithm can achieve the rapidness of online interference estimation and low complexity with less consumption of resources.Numerical simulation results show that the algorithm can effectively compensate the passive intermodulation interference,and achieve a high signal-to-interference ratio gain.展开更多
文摘The key to narrow-band interference excision in frequency domain is to determine the excision thresh- old in direct-sequence spread-spectrum (DS-SS) systems. The excision threshold is a non-linear function related to the number and the power of interference, and attempting to get the exact relation of threshold related to the number and the power of interference is almost impossible. The N-sigma algorithm determines the excision threshold using subsection function; however, the excision threshold determined by this method is not exact. A new method to determine the threshold of N-sigma algorithm is proposed. The new method modifies the scale factor N by use of the membership function. The threshold determined by this method is consecutive and smooth, and it is closer to the fact than that of the initial N-sigma algorithm. The GPS signal and single-tone (CW) interference (that is, typical narrow-band interference) are implemented in the simulation, and the results are presented to demonstrate the validity of the new algorithm.
基金supported by the National Natural SciencFoundation of China(Nos.U1636125,61601027)
文摘For the performance issues of satellite transceivers suffering passive intermodulation interference,a novel and effective digital suppression algorithm is presented in this paper.In contrast to analog approaches,digital passive intermodulation(PIM) suppression approaches can be easily reconfigured and therefore are highly attractive for future satellite communication systems.A simplified model of nonlinear distortion from passive microwave devices is established in consideration of the memory effect.The multiple high-order PIM products falling into the receiving band can be described as a bilinear predictor function.A suppression algorithm based on a bilinear polynomial decorrelated adaptive filter is proposed for baseband digital signal processing.In consideration of the time-varying characteristics of passive intermodulation,this algorithm can achieve the rapidness of online interference estimation and low complexity with less consumption of resources.Numerical simulation results show that the algorithm can effectively compensate the passive intermodulation interference,and achieve a high signal-to-interference ratio gain.