Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
As the field of artificial intelligence continues to evolve,so too does the application of multimodal learning analysis and intelligent adaptive learning systems.This trend has the potential to promote the equalizatio...As the field of artificial intelligence continues to evolve,so too does the application of multimodal learning analysis and intelligent adaptive learning systems.This trend has the potential to promote the equalization of educational resources,the intellectualization of educational methods,and the modernization of educational reform,among other benefits.This study proposes a construction framework for an intelligent adaptive learning system that is supported by multimodal data.It provides a detailed explanation of the system’s working principles and patterns,which aim to enhance learners’online engagement in behavior,emotion,and cognition.The study seeks to address the issue of intelligent adaptive learning systems diagnosing learners’learning behavior based solely on learning achievement,to improve learners’online engagement,enable them to master more required knowledge,and ultimately achieve better learning outcomes.展开更多
The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real ...The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real time intelligent environment,and a new modified Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm. The modified BFGS algorithm for the adaptive learning of back propagation (BP) neural networks is developed and embedded into NeurOn-Line by introducing a new search method of learning rate to the full memory BFGS algorithm. Simulation results show that the adaptive learning and prediction neural network system can quicklv track the time-varving and nonlinear behavior of the bioreactor.展开更多
Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechani...Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.展开更多
Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot ...Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot effectively deal with complex random scenarios at urban intersections.To deal with this,a deep deterministic policy gradient(DDPG)decision-making algorithm(T-DDPG)based on a time-series Markov decision process(T-MDP)was developed,where the state was extended to collect observations from several consecutive frames.Experiments found that T-DDPG performed better in terms of convergence and generalizability in complex intersection scenarios than a traditional DDPG algorithm.Furthermore,model-agnostic meta-learning(MAML)was incorporated into the T-DDPG algorithm to improve the training method,leading to a decision algorithm(T-MAML-DDPG)based on a secondary gradient.Simulation experiments of intersection scenarios were carried out on the Gym-Carla platform to verify and compare the decision models.The results showed that T-MAML-DDPG was able to easily deal with the random states of complex intersection scenarios,which could improve traffic safety and efficiency.The above decision-making models based on meta-reinforcement learning are significant for enhancing the decision-making ability of intelligent vehicles at urban intersections.展开更多
The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.Fo...The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.For this purpose,this paper introduces an intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization.First,linear cutting tests and numerical simulations are used to investigate the physical rules between different cutting parameters(penetration,cutter spacing,etc.)and rock compressive strength.Second,a dual-driven mapping of rock parameters and TBM operating parameters based on data mining and physical rules of rock breaking is established with high accuracy by combining rock-breaking rules and deep neural networks(DNNs).The decision-making method is established by dual-driven mapping,using the effective rock-breaking capacity and the rated value of mechanical parameters as constraints and the total excavation cost as the optimization objective.The best operational parameters can be obtained by searching for the revolutions per minute and penetration that correspond to the extremum of the constrained objective function.The practicability and effectiveness of the developed decision-making model is verified in the SecondWater Source Channel of Hangzhou,China,resulting in the average penetration rate increasing by 11.3%and the total cost decreasing by 10%.展开更多
Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinfor...Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA.展开更多
Artificial intelligence(AI)continues to transform data analysis in many domains.Progress in each domain is driven by a growing body of annotated data,increased computational resources,and technological innovations.In ...Artificial intelligence(AI)continues to transform data analysis in many domains.Progress in each domain is driven by a growing body of annotated data,increased computational resources,and technological innovations.In medicine,the sensitivity of the data,the complexity of the tasks,the potentially high stakes,and a requirement of accountability give rise to a particular set of challenges.In this review,we focus on three key methodological approaches that address some of the particular challenges in AI-driven medical decision making.1)Explainable AI aims to produce a human-interpretable justification for each output.Such models increase confidence if the results appear plausible and match the clinicians expectations.However,the absence of a plausible explanation does not imply an inaccurate model.Especially in highly non-linear,complex models that are tuned to maximize accuracy,such interpretable representations only reflect a small portion of the justification.2)Domain adaptation and transfer learning enable AI models to be trained and applied across multiple domains.For example,a classification task based on images acquired on different acquisition hardware.3)Federated learning enables learning large-scale models without exposing sensitive personal health information.Unlike centralized AI learning,where the centralized learning machine has access to the entire training data,the federated learning process iteratively updates models across multiple sites by exchanging only parameter updates,not personal health data.This narrative review covers the basic concepts,highlights relevant corner-stone and stateof-the-art research in the field,and discusses perspectives.展开更多
Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinfo...Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinforcement learning theory,an improved Deep Deterministic Policy Gradient algorithm with dual noise and prioritized experience replay is proposed,which uses a double noise mechanism to expand the search range of the action,and introduces a priority experience playback mechanism to effectively achieve data utilization.Finally,the algorithm is simulated and validated on the ground-to-air countermeasures digital battlefield.The results of the experiment show that,under the framework of the deep neural network for intelligent weapon-target assignment proposed in this paper,compared to the traditional RELU algorithm,the agent trained with reinforcement learning algorithms,such asDeepDeterministic Policy Gradient algorithm,Asynchronous Advantage Actor-Critic algorithm,Deep Q Network algorithm performs better.It shows that the use of deep reinforcement learning algorithms to solve the weapon-target assignment problem in the field of air defense operations is scientific.In contrast to other reinforcement learning algorithms,the agent trained by the improved Deep Deterministic Policy Gradient algorithm has a higher win rate and reward in confrontation,and the use of weapon resources is more efficient.It shows that the model and algorithm have certain superiority and rationality.The results of this paper provide new ideas for solving the problemof weapon-target assignment in air defense combat command decisions.展开更多
Initiatives to minimise battery use,address sustainability,and reduce regular maintenance have driven the challenge to use alternative power sources to supply energy to devices deployed in Internet of Things(IoT)netwo...Initiatives to minimise battery use,address sustainability,and reduce regular maintenance have driven the challenge to use alternative power sources to supply energy to devices deployed in Internet of Things(IoT)networks.As a key pillar of fifth generation(5G)and beyond 5G networks,IoT is estimated to reach 42 billion devices by the year 2025.Thermoelectric generators(TEGs)are solid state energy harvesters which reliably and renewably convert thermal energy into electrical energy.These devices are able to recover lost thermal energy,produce energy in extreme environments,generate electric power in remote areas,and power micro‐sensors.Applying the state of the art,the authorspresent a comprehensive review of machine learning(ML)approaches applied in combination with TEG‐powered IoT devices to manage and predict available energy.The application areas of TEG‐driven IoT devices that exploit as a heat source the temperature differences found in the environment,biological structures,machines,and other technologies are summarised.Based on detailed research of the state of the art in TEG‐powered devices,the authors investigated the research challenges,applied algorithms and application areas of this technology.The aims of the research were to devise new energy prediction and energy management systems based on ML methods,create supervised algorithms which better estimate incoming energy,and develop unsupervised and semi‐supervised ap-proaches which provide adaptive and dynamic operation.The review results indicate that TEGs are a suitable energy harvesting technology for low‐power applications through their scalability,usability in ubiquitous temperature difference scenarios,and long oper-ating lifetime.However,TEGs also have low energy efficiency(around 10%)and require a relatively constant heat source.展开更多
Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examini...Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.展开更多
As the pioneer in the intelligent construction technologies(ICT)of transportation infrastructure,intelligent compaction(IC)has been applied in the infrastructure construction of various countries.It is currently the t...As the pioneer in the intelligent construction technologies(ICT)of transportation infrastructure,intelligent compaction(IC)has been applied in the infrastructure construction of various countries.It is currently the technology that best reflects the intelligence of engineering construction.This article overviews the latest developments and trends in IC.Firstly,the basic meaning of ICT is defined based on the essential characteristics of intelligent construction of transportation infrastructure,“perception,analysis,decision-making,execution”(PADE).The concept of intelligent compaction technology classification is also introduced.The PADE requirements that intelligent compaction should meet are proposed.Secondly,according to the sequence of“perception,analysis,decision-making,execution,”the workflow and key technologies of intelligent compaction are analyzed,and the mechanism of using the response of the roller to solve the modulus is given and verified.On this basis,The IC feasibility test methods,including compaction degree,compaction stability,and compaction uniformity,are briefly described.The implementation scheme of feedback control is given.Then,the use of artificial neural networks(ANN),hybrid expert systems,and reinforcement learning in intelligent compaction are briefly introduced.Finally,several extended applications of intelligent compaction are expounded,including the development ideas of intelligent road rollers and the role of intelligent compaction in virtual construction,the layer-specific mechanical parameters of fillers,etc.展开更多
Estimating time-selective millimeter wave wireless channels and then deriving the optimum beam alignment for directional antennas is a challenging task.To solve this problem,one can focus on tracking the strongest mul...Estimating time-selective millimeter wave wireless channels and then deriving the optimum beam alignment for directional antennas is a challenging task.To solve this problem,one can focus on tracking the strongest multipath components(MPCs).Aligning antenna beams with the tracked MPCs increases the channel coherence time by several orders of magnitude.This contribution suggests tracking the MPCs geometrically.The derived geometric tracker is based on algorithms known as Doppler bearing tracking.A recent work on geometric-polar tracking is reformulated into an efficient recursive version.If the relative position of the MPCs is known,all other sensors on board a vehicle,e.g.,lidar,radar,and camera,will perform active learning based on their own observed data.By learning the relationship between sensor data and MPCs,onboard sensors can participate in channel tracking.Joint tracking of many integrated sensors will increase the reliability of MPC tracking.展开更多
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
文摘As the field of artificial intelligence continues to evolve,so too does the application of multimodal learning analysis and intelligent adaptive learning systems.This trend has the potential to promote the equalization of educational resources,the intellectualization of educational methods,and the modernization of educational reform,among other benefits.This study proposes a construction framework for an intelligent adaptive learning system that is supported by multimodal data.It provides a detailed explanation of the system’s working principles and patterns,which aim to enhance learners’online engagement in behavior,emotion,and cognition.The study seeks to address the issue of intelligent adaptive learning systems diagnosing learners’learning behavior based solely on learning achievement,to improve learners’online engagement,enable them to master more required knowledge,and ultimately achieve better learning outcomes.
文摘The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real time intelligent environment,and a new modified Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm. The modified BFGS algorithm for the adaptive learning of back propagation (BP) neural networks is developed and embedded into NeurOn-Line by introducing a new search method of learning rate to the full memory BFGS algorithm. Simulation results show that the adaptive learning and prediction neural network system can quicklv track the time-varving and nonlinear behavior of the bioreactor.
基金supported by Korea Institute for Advancement of Technology(KIAT)grant funded by theKoreaGovernment(MOTIE)(P0008703,The CompetencyDevelopment Program for Industry Specialist).
文摘Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.
基金supported in part by the Beijing Municipal Science and Technology Project(No.Z191100007419010)Automobile Industry Joint Fund(No.U1764261)of the National Natural Science Foundation of China+1 种基金Shandong Key R&D Program(No.2020CXGC010118)Key Laboratory for New Technology Application of Road Conveyance of Jiangsu Province(No.BM20082061706)。
文摘Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot effectively deal with complex random scenarios at urban intersections.To deal with this,a deep deterministic policy gradient(DDPG)decision-making algorithm(T-DDPG)based on a time-series Markov decision process(T-MDP)was developed,where the state was extended to collect observations from several consecutive frames.Experiments found that T-DDPG performed better in terms of convergence and generalizability in complex intersection scenarios than a traditional DDPG algorithm.Furthermore,model-agnostic meta-learning(MAML)was incorporated into the T-DDPG algorithm to improve the training method,leading to a decision algorithm(T-MAML-DDPG)based on a secondary gradient.Simulation experiments of intersection scenarios were carried out on the Gym-Carla platform to verify and compare the decision models.The results showed that T-MAML-DDPG was able to easily deal with the random states of complex intersection scenarios,which could improve traffic safety and efficiency.The above decision-making models based on meta-reinforcement learning are significant for enhancing the decision-making ability of intelligent vehicles at urban intersections.
基金supported by the National Natural Science Foundation of China(Grant No.52021005)Outstanding Youth Foundation of Shandong Province of China(Grant No.ZR2021JQ22)Taishan Scholars Program of Shandong Province of China(Grant No.tsqn201909003)。
文摘The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.For this purpose,this paper introduces an intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization.First,linear cutting tests and numerical simulations are used to investigate the physical rules between different cutting parameters(penetration,cutter spacing,etc.)and rock compressive strength.Second,a dual-driven mapping of rock parameters and TBM operating parameters based on data mining and physical rules of rock breaking is established with high accuracy by combining rock-breaking rules and deep neural networks(DNNs).The decision-making method is established by dual-driven mapping,using the effective rock-breaking capacity and the rated value of mechanical parameters as constraints and the total excavation cost as the optimization objective.The best operational parameters can be obtained by searching for the revolutions per minute and penetration that correspond to the extremum of the constrained objective function.The practicability and effectiveness of the developed decision-making model is verified in the SecondWater Source Channel of Hangzhou,China,resulting in the average penetration rate increasing by 11.3%and the total cost decreasing by 10%.
基金This research was funded by the Project of the National Natural Science Foundation of China,Grant Number 62106283.
文摘Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA.
基金This work was supported in part by the National Natural Science Foundation of China(82260360)the Foreign Young Talent Program(QN2021033002L).
文摘Artificial intelligence(AI)continues to transform data analysis in many domains.Progress in each domain is driven by a growing body of annotated data,increased computational resources,and technological innovations.In medicine,the sensitivity of the data,the complexity of the tasks,the potentially high stakes,and a requirement of accountability give rise to a particular set of challenges.In this review,we focus on three key methodological approaches that address some of the particular challenges in AI-driven medical decision making.1)Explainable AI aims to produce a human-interpretable justification for each output.Such models increase confidence if the results appear plausible and match the clinicians expectations.However,the absence of a plausible explanation does not imply an inaccurate model.Especially in highly non-linear,complex models that are tuned to maximize accuracy,such interpretable representations only reflect a small portion of the justification.2)Domain adaptation and transfer learning enable AI models to be trained and applied across multiple domains.For example,a classification task based on images acquired on different acquisition hardware.3)Federated learning enables learning large-scale models without exposing sensitive personal health information.Unlike centralized AI learning,where the centralized learning machine has access to the entire training data,the federated learning process iteratively updates models across multiple sites by exchanging only parameter updates,not personal health data.This narrative review covers the basic concepts,highlights relevant corner-stone and stateof-the-art research in the field,and discusses perspectives.
基金funded by the Project of the National Natural Science Foundation of China,Grant Number 62106283.
文摘Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinforcement learning theory,an improved Deep Deterministic Policy Gradient algorithm with dual noise and prioritized experience replay is proposed,which uses a double noise mechanism to expand the search range of the action,and introduces a priority experience playback mechanism to effectively achieve data utilization.Finally,the algorithm is simulated and validated on the ground-to-air countermeasures digital battlefield.The results of the experiment show that,under the framework of the deep neural network for intelligent weapon-target assignment proposed in this paper,compared to the traditional RELU algorithm,the agent trained with reinforcement learning algorithms,such asDeepDeterministic Policy Gradient algorithm,Asynchronous Advantage Actor-Critic algorithm,Deep Q Network algorithm performs better.It shows that the use of deep reinforcement learning algorithms to solve the weapon-target assignment problem in the field of air defense operations is scientific.In contrast to other reinforcement learning algorithms,the agent trained by the improved Deep Deterministic Policy Gradient algorithm has a higher win rate and reward in confrontation,and the use of weapon resources is more efficient.It shows that the model and algorithm have certain superiority and rationality.The results of this paper provide new ideas for solving the problemof weapon-target assignment in air defense combat command decisions.
基金supported by the project SP2023/009“Development of algorithms and systems for control,mea-surement and safety applications IX”of the Student Grant System,VSB‐TU Ostrava.This work was also supproted by the project FW03010194“Development of a System for Monitoring and Evaluation of Selected Risk Factors of Physical Workload in the Context of Industry 4.0″of the Technology Agency of the Czech Republicfunding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.856670.This research received no external funding.
文摘Initiatives to minimise battery use,address sustainability,and reduce regular maintenance have driven the challenge to use alternative power sources to supply energy to devices deployed in Internet of Things(IoT)networks.As a key pillar of fifth generation(5G)and beyond 5G networks,IoT is estimated to reach 42 billion devices by the year 2025.Thermoelectric generators(TEGs)are solid state energy harvesters which reliably and renewably convert thermal energy into electrical energy.These devices are able to recover lost thermal energy,produce energy in extreme environments,generate electric power in remote areas,and power micro‐sensors.Applying the state of the art,the authorspresent a comprehensive review of machine learning(ML)approaches applied in combination with TEG‐powered IoT devices to manage and predict available energy.The application areas of TEG‐driven IoT devices that exploit as a heat source the temperature differences found in the environment,biological structures,machines,and other technologies are summarised.Based on detailed research of the state of the art in TEG‐powered devices,the authors investigated the research challenges,applied algorithms and application areas of this technology.The aims of the research were to devise new energy prediction and energy management systems based on ML methods,create supervised algorithms which better estimate incoming energy,and develop unsupervised and semi‐supervised ap-proaches which provide adaptive and dynamic operation.The review results indicate that TEGs are a suitable energy harvesting technology for low‐power applications through their scalability,usability in ubiquitous temperature difference scenarios,and long oper-ating lifetime.However,TEGs also have low energy efficiency(around 10%)and require a relatively constant heat source.
文摘Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.
文摘As the pioneer in the intelligent construction technologies(ICT)of transportation infrastructure,intelligent compaction(IC)has been applied in the infrastructure construction of various countries.It is currently the technology that best reflects the intelligence of engineering construction.This article overviews the latest developments and trends in IC.Firstly,the basic meaning of ICT is defined based on the essential characteristics of intelligent construction of transportation infrastructure,“perception,analysis,decision-making,execution”(PADE).The concept of intelligent compaction technology classification is also introduced.The PADE requirements that intelligent compaction should meet are proposed.Secondly,according to the sequence of“perception,analysis,decision-making,execution,”the workflow and key technologies of intelligent compaction are analyzed,and the mechanism of using the response of the roller to solve the modulus is given and verified.On this basis,The IC feasibility test methods,including compaction degree,compaction stability,and compaction uniformity,are briefly described.The implementation scheme of feedback control is given.Then,the use of artificial neural networks(ANN),hybrid expert systems,and reinforcement learning in intelligent compaction are briefly introduced.Finally,several extended applications of intelligent compaction are expounded,including the development ideas of intelligent road rollers and the role of intelligent compaction in virtual construction,the layer-specific mechanical parameters of fillers,etc.
基金supported by the Austrian Federal Ministry for Digital and Economic Affairs
文摘Estimating time-selective millimeter wave wireless channels and then deriving the optimum beam alignment for directional antennas is a challenging task.To solve this problem,one can focus on tracking the strongest multipath components(MPCs).Aligning antenna beams with the tracked MPCs increases the channel coherence time by several orders of magnitude.This contribution suggests tracking the MPCs geometrically.The derived geometric tracker is based on algorithms known as Doppler bearing tracking.A recent work on geometric-polar tracking is reformulated into an efficient recursive version.If the relative position of the MPCs is known,all other sensors on board a vehicle,e.g.,lidar,radar,and camera,will perform active learning based on their own observed data.By learning the relationship between sensor data and MPCs,onboard sensors can participate in channel tracking.Joint tracking of many integrated sensors will increase the reliability of MPC tracking.