期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quantitative Analysis of the Silk Moth's Chemical Plume Tracing Locomotion Using a Hierarchical Classification Method 被引量:1
1
作者 Jouh Yeong Chew Daisuke Kurabayashi 《Journal of Bionic Engineering》 SCIE EI CSCD 2014年第2期268-281,共14页
The silk moth (Bombyx mori) exhibits efficient Chemical Plume Tracing (CPT), which is ideal for biomimetics. However, there is insufficient quantitative understanding of its CPT behavior. We propose a hierarchical... The silk moth (Bombyx mori) exhibits efficient Chemical Plume Tracing (CPT), which is ideal for biomimetics. However, there is insufficient quantitative understanding of its CPT behavior. We propose a hierarchical classification method to segment its natural CPT locomotion and to build its inverse model for detecting stimulus input. This provides the basis for quantitative analysis. The Gaussian mixture model with expectation-maximization algorithm is used first for unsupervised classification to decompose CPT locomotion data into Gaussian density components that represent a set of quantified elemental motions. A heuristic behavioral rule is used to categorize these components to eliminate components that are descriptive of the same motion. Then, the echo state network is used for supervised classification to evaluate segmented elemental motions and to compare CPT locomotion among different moths. In this case, categorized elemental motions are used as the training data to estimate stimulus time. We successfully built the inverse CPT behavioral model of the silk moth to detect stimulus input with good accuracy. The quantitative analysis indicates that silk moths exhibit behavioral singularity and time dependency in their CPT locomotion, which is dominated by its singularity. 展开更多
关键词 biomimetics RECOGNITION learning and adaptive systems chemical plume tracing quantitative analysis
原文传递
Revisiting the ODE Method for Recursive Algorithms:Fast Convergence Using Quasi Stochastic Approximation
2
作者 CHEN Shuhang DEVRAJ Adithya +1 位作者 BERSTEIN Andrey MEYN Sean 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第5期1681-1702,共22页
Several decades ago,Profs.Sean Meyn and Lei Guo were postdoctoral fellows at ANU,where they shared interest in recursive algorithms.It seems fitting to celebrate Lei Guo’s 60 th birthday with a review of the ODE Meth... Several decades ago,Profs.Sean Meyn and Lei Guo were postdoctoral fellows at ANU,where they shared interest in recursive algorithms.It seems fitting to celebrate Lei Guo’s 60 th birthday with a review of the ODE Method and its recent evolution,with focus on the following themes:The method has been regarded as a technique for algorithm analysis.It is argued that this viewpoint is backwards:The original stochastic approximation method was surely motivated by an ODE,and tools for analysis came much later(based on establishing robustness of Euler approximations).The paper presents a brief survey of recent research in machine learning that shows the power of algorithm design in continuous time,following by careful approximation to obtain a practical recursive algorithm.While these methods are usually presented in a stochastic setting,this is not a prerequisite.In fact,recent theory shows that rates of convergence can be dramatically accelerated by applying techniques inspired by quasi Monte-Carlo.Subject to conditions,the optimal rate of convergence can be obtained by applying the averaging technique of Polyak and Ruppert.The conditions are not universal,but theory suggests alternatives to achieve acceleration.The theory is illustrated with applications to gradient-free optimization,and policy gradient algorithms for reinforcement learning. 展开更多
关键词 learning and adaptive systems in artificial intelligence reinforcement learning stochastic approximation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部