Fetal ECG extraction has the vital significance for fetal monitoring.This paper introduces a method of extracting fetal ECG based on adaptive linear neural network.The method can be realized by training a small quanti...Fetal ECG extraction has the vital significance for fetal monitoring.This paper introduces a method of extracting fetal ECG based on adaptive linear neural network.The method can be realized by training a small quantity of data.In addition,a better result can be achieved by improving neural network structure.Thus,more easily identified fetal ECG can be extracted.Experimental results show that the adaptive linear neural network can be used to extract fetal ECG from maternal abdominal signal effectively.What's more,a clearer fetal ECG can be extracted by improving neural network structure.展开更多
In the mechanical fault detection and diagnosis field, it is more and more important to analyze the instantaneous frequency (IF) character of complex vibration signal. The improved IF estimation method is put forwar...In the mechanical fault detection and diagnosis field, it is more and more important to analyze the instantaneous frequency (IF) character of complex vibration signal. The improved IF estimation method is put forward aiming at the shortage of traditional Hilbert transform. It is based on Hilbert transform in wavelet domain. With the help of relationship between the real part and the imaginary part obtained from the complex coefficient of continuous wavelet transform or the analyti- cal signal reconstructed in wavelet packet decomposition, the instantaneous phase function of the subcomponent is extracted. In order to improve the precise of IF estimated out, some means such as Linear regression, adaptive filtering, resampling are applied into the instantaneous phase obtained, then, the central differencing operator is used to get desired IF. Simulation results with synthetic and gearbox fault signals are included to illustrate the proposed method.展开更多
Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and diffe...Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.展开更多
We consider a wide range of non-convex regularized minimization problems, where the non-convex regularization term is composite with a linear function engaged in sparse learning. Recent theoretical investigations have...We consider a wide range of non-convex regularized minimization problems, where the non-convex regularization term is composite with a linear function engaged in sparse learning. Recent theoretical investigations have demonstrated their superiority over their convex counterparts. The computational challenge lies in the fact that the proximal mapping associated with non-convex regularization is not easily obtained due to the imposed linear composition. Fortunately, the problem structure allows one to introduce an auxiliary variable and reformulate it as an optimization problem with linear constraints, which can be solved using the Linearized Alternating Direction Method of Multipliers (LADMM). Despite the success of LADMM in practice, it remains unknown whether LADMM is convergent in solving such non-convex compositely regularized optimizations. In this research, we first present a detailed convergence analysis of the LADMM algorithm for solving a non-convex compositely regularized optimization problem with a large class of non-convex penalties. Furthermore, we propose an Adaptive LADMM (AdaLADMM) algorithm with a line-search criterion. Experimental results on different genres of datasets validate the efficacy of the proposed algorithm.展开更多
Hybrid wavelength-division-multiplexing(WDM)/time-division-multiplexing(TDM) ethernet passive optical networks(EPONs) can achieve low per-subscriber cost and scalability to increase the number of subscribers. This pap...Hybrid wavelength-division-multiplexing(WDM)/time-division-multiplexing(TDM) ethernet passive optical networks(EPONs) can achieve low per-subscriber cost and scalability to increase the number of subscribers. This paper discusses dynamic wavelength and bandwidth allocation(DWBA) algorithm in hybrid WDM/TDM EPONs.Based on the correlation structure of the variable bit rate(VBR) video traffic,we propose a quality-ofservice (QoS) supported DWBA using adaptive linear traffic prediction.Wavelength and timeslot are allocated dynamically by optical line terminal(OLT) to all optical network units(ONUs) based on the bandwidth requests and the guaranteed service level agreements(SLA) of all ONUs.Mean square error of the predicted average arriving rate of compound video traffic during waiting period is minimized through Wiener-Hopf equation.Simulation results show that the DWBA-adaptive-linear-prediction(DWBA-ALP) algorithm can significantly improve the QoS performances in terms of low delay and high bandwidth utilization.展开更多
This paper presents a novel method of power quality enrichment in a grid-connected photovoltaic(PV) system using a distribution static compensator(DSTATCOM). The paper consists of two-step control processes. In the pr...This paper presents a novel method of power quality enrichment in a grid-connected photovoltaic(PV) system using a distribution static compensator(DSTATCOM). The paper consists of two-step control processes. In the primary step, a fuzzy logic controller(FLC) is employed in the DC-DC converter to extract the peak power point from the PV panel, where the FLC produces a switching signal for the DC-DC converter.In the secondary step, a unit vector template(UVT)/adaptive linear neuron(ADALINE)-based least mean square(LMS) controller is adopted in the DC-AC converter, i. e., voltage source converter(VSC). The input to this VSC is the boosted DC voltage, which originates from the PV panel as a result of DC-DC conversion. The VSC shunted with the power grid is known as a DSTATCOM, which can maintain the power quality in the distribution system. The UVT controller generates reference source currents from the grid voltages and DC-link voltages.The ADALINE-based LMS controller calculates the online weight according to the previous weights by the sensed load current. The UVT/ADALINE-based LMS controller of a DSTATCOM performs several tasks such as maintaining the sinusoidal source current, achieving a unity power factor, and performing reactive power compensation. The reference current extracted from the UVT/ADALINE-based LMS controller is fed to the hysteresis current controller to obtain the desired switching signal for the VSC. A 100 k W solar PV system integrated into a three-phase four-wire distribution system through a four-leg VSC is designed in MATLAB/Simulink. The performances of the FLC and UVT/ADALINE-based LMS controllers are demonstrated under various irradiances as well as constant temperature and nonlinear loading conditions.展开更多
In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic count...In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.展开更多
Real-time variable bit rate(VBR) video is expected to take a significant portion of multimedia applications.However,plentiful challenges to VBR video service provision have been raised for its characteristic of high...Real-time variable bit rate(VBR) video is expected to take a significant portion of multimedia applications.However,plentiful challenges to VBR video service provision have been raised for its characteristic of high traffic abruptness.To support multi-user real-time VBR video transmission with high bandwidth utilization and satisfied quality of service(QoS),this article proposes a practical dynamic bandwidth management scheme.This scheme forecasts future media rate of VBR video by employing time-domain adaptive linear predictor and using media delivery index(MDI) as both QoS measurement and complementary management reference.In addition,to support multi-user application,an adjustment priorities classified strategy is also put forward.Finally,a test-bed based on this management scheme is established.The experimental results demonstrate that the scheme proposed in this article is efficient with bandwidth utilization increased by 20%-60% compared to a fixed service rate and QoS guaranteed.展开更多
基金Foundation of Young Backbone Teacher of Beijing Citygrant number:102KB000845
文摘Fetal ECG extraction has the vital significance for fetal monitoring.This paper introduces a method of extracting fetal ECG based on adaptive linear neural network.The method can be realized by training a small quantity of data.In addition,a better result can be achieved by improving neural network structure.Thus,more easily identified fetal ECG can be extracted.Experimental results show that the adaptive linear neural network can be used to extract fetal ECG from maternal abdominal signal effectively.What's more,a clearer fetal ECG can be extracted by improving neural network structure.
基金This project is supported by National Natural Science Foundation of China (No.50605065)Natural Science Foundation Project of CQ CSTC(No.2007BB2142).
文摘In the mechanical fault detection and diagnosis field, it is more and more important to analyze the instantaneous frequency (IF) character of complex vibration signal. The improved IF estimation method is put forward aiming at the shortage of traditional Hilbert transform. It is based on Hilbert transform in wavelet domain. With the help of relationship between the real part and the imaginary part obtained from the complex coefficient of continuous wavelet transform or the analyti- cal signal reconstructed in wavelet packet decomposition, the instantaneous phase function of the subcomponent is extracted. In order to improve the precise of IF estimated out, some means such as Linear regression, adaptive filtering, resampling are applied into the instantaneous phase obtained, then, the central differencing operator is used to get desired IF. Simulation results with synthetic and gearbox fault signals are included to illustrate the proposed method.
文摘Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.
基金supported by the National Natural Science Foundation of China(Nos.61303264,61202482,and 61202488)Guangxi Cooperative Innovation Center of Cloud Computing and Big Data(No.YD16505)Distinguished Young Scientist Promotion of National University of Defense Technology
文摘We consider a wide range of non-convex regularized minimization problems, where the non-convex regularization term is composite with a linear function engaged in sparse learning. Recent theoretical investigations have demonstrated their superiority over their convex counterparts. The computational challenge lies in the fact that the proximal mapping associated with non-convex regularization is not easily obtained due to the imposed linear composition. Fortunately, the problem structure allows one to introduce an auxiliary variable and reformulate it as an optimization problem with linear constraints, which can be solved using the Linearized Alternating Direction Method of Multipliers (LADMM). Despite the success of LADMM in practice, it remains unknown whether LADMM is convergent in solving such non-convex compositely regularized optimizations. In this research, we first present a detailed convergence analysis of the LADMM algorithm for solving a non-convex compositely regularized optimization problem with a large class of non-convex penalties. Furthermore, we propose an Adaptive LADMM (AdaLADMM) algorithm with a line-search criterion. Experimental results on different genres of datasets validate the efficacy of the proposed algorithm.
文摘Hybrid wavelength-division-multiplexing(WDM)/time-division-multiplexing(TDM) ethernet passive optical networks(EPONs) can achieve low per-subscriber cost and scalability to increase the number of subscribers. This paper discusses dynamic wavelength and bandwidth allocation(DWBA) algorithm in hybrid WDM/TDM EPONs.Based on the correlation structure of the variable bit rate(VBR) video traffic,we propose a quality-ofservice (QoS) supported DWBA using adaptive linear traffic prediction.Wavelength and timeslot are allocated dynamically by optical line terminal(OLT) to all optical network units(ONUs) based on the bandwidth requests and the guaranteed service level agreements(SLA) of all ONUs.Mean square error of the predicted average arriving rate of compound video traffic during waiting period is minimized through Wiener-Hopf equation.Simulation results show that the DWBA-adaptive-linear-prediction(DWBA-ALP) algorithm can significantly improve the QoS performances in terms of low delay and high bandwidth utilization.
文摘This paper presents a novel method of power quality enrichment in a grid-connected photovoltaic(PV) system using a distribution static compensator(DSTATCOM). The paper consists of two-step control processes. In the primary step, a fuzzy logic controller(FLC) is employed in the DC-DC converter to extract the peak power point from the PV panel, where the FLC produces a switching signal for the DC-DC converter.In the secondary step, a unit vector template(UVT)/adaptive linear neuron(ADALINE)-based least mean square(LMS) controller is adopted in the DC-AC converter, i. e., voltage source converter(VSC). The input to this VSC is the boosted DC voltage, which originates from the PV panel as a result of DC-DC conversion. The VSC shunted with the power grid is known as a DSTATCOM, which can maintain the power quality in the distribution system. The UVT controller generates reference source currents from the grid voltages and DC-link voltages.The ADALINE-based LMS controller calculates the online weight according to the previous weights by the sensed load current. The UVT/ADALINE-based LMS controller of a DSTATCOM performs several tasks such as maintaining the sinusoidal source current, achieving a unity power factor, and performing reactive power compensation. The reference current extracted from the UVT/ADALINE-based LMS controller is fed to the hysteresis current controller to obtain the desired switching signal for the VSC. A 100 k W solar PV system integrated into a three-phase four-wire distribution system through a four-leg VSC is designed in MATLAB/Simulink. The performances of the FLC and UVT/ADALINE-based LMS controllers are demonstrated under various irradiances as well as constant temperature and nonlinear loading conditions.
基金supported by the National Natural Science Foundation of China under Grant 61172116
文摘In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.
基金supported by the National Basic Research Program of China (2007CB310705)the National Natural Science Foundation of China (60772024, 60711140087)+4 种基金the Hi-Tech Research and Development Program of China (2007AA01Z255)the NCET (06-0090)the PCSIRT (IRT0609)the ISTCP (2006DFA11040)the 111 Project of China (B07005)
文摘Real-time variable bit rate(VBR) video is expected to take a significant portion of multimedia applications.However,plentiful challenges to VBR video service provision have been raised for its characteristic of high traffic abruptness.To support multi-user real-time VBR video transmission with high bandwidth utilization and satisfied quality of service(QoS),this article proposes a practical dynamic bandwidth management scheme.This scheme forecasts future media rate of VBR video by employing time-domain adaptive linear predictor and using media delivery index(MDI) as both QoS measurement and complementary management reference.In addition,to support multi-user application,an adjustment priorities classified strategy is also put forward.Finally,a test-bed based on this management scheme is established.The experimental results demonstrate that the scheme proposed in this article is efficient with bandwidth utilization increased by 20%-60% compared to a fixed service rate and QoS guaranteed.