Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g...Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.展开更多
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho...In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.展开更多
More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and ...More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and they cannot make effective use of the mixed information generated by multi-user when exploring users’potential interests.To solve these problems,this paper proposes an adaptive program recommendation system for multi-user sharing environment.Specifically,we first design an offline periodic identification module by building multi-user features and periodically predicting target user in future sessions,which can separate the profile of target user from mixed log records.Subsequently,an online recommendation module with adaptive timevarying exploration strategy is constructed by jointly using personal information and multi-user social information provided by identification module.On one hand,to learn the dynamic changes in user-interest,a time-varying linear upper confidence bound(LinUCB)based on personal information is designed.On the other hand,to reduce the risk of exploration,a timeinvariant LinUCB based on separated multi-user social information from one account/device is proposed to compute the quality scores of programs for each user,which is integrated into the time-varying LinUCB by cross-weighting strategy.Finally,experimental results validate the efficiency of the proposed scheme.展开更多
Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(...Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.展开更多
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta...This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.展开更多
As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improveme...As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improvement of all clients;however,the overall performance improvement often sacrifices the performance of certain clients,such as clients with less data.Ignoring fairness may greatly reduce the willingness of some clients to participate in federated learning.In order to solve the above problem,the authors propose Ada-FFL,an adaptive fairness federated aggregation learning algorithm,which can dynamically adjust the fairness coefficient according to the update of the local models,ensuring the convergence performance of the global model and the fairness between federated learning clients.By integrating coarse-grained and fine-grained equity solutions,the authors evaluate the deviation of local models by considering both global equity and individual equity,then the weight ratio will be dynamically allocated for each client based on the evaluated deviation value,which can ensure that the update differences of local models are fully considered in each round of training.Finally,by combining a regularisation term to limit the local model update to be closer to the global model,the sensitivity of the model to input perturbations can be reduced,and the generalisation ability of the global model can be improved.Through numerous experiments on several federal data sets,the authors show that our method has more advantages in convergence effect and fairness than the existing baselines.展开更多
An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic perf...An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic performance. Notably, the performance of the output error is confined in an envelope characterized by exponential convergence, leading to convergence to zero. This feature ensures a prompt response from admittance control and establishes a reliable safety framework for interactions. Simulation results provide practical insights,demonstrating the viability of the control scheme proposed in this paper.展开更多
The 2.5 m wide-field and high-resolution solar telescope(WeHoST)is currently under developing for solar observations.WeHoST aims to achieve high-resolution observations over a super-wide field of view(FOV)of5′×5...The 2.5 m wide-field and high-resolution solar telescope(WeHoST)is currently under developing for solar observations.WeHoST aims to achieve high-resolution observations over a super-wide field of view(FOV)of5′×5′,and a desired resolution of 0.3″.To meet the scientific requirements of WeHoST,the ground-layer adaptive optics(GLAO)with a specially designed wave front sensing system is as the primary consideration.We introduce the GLAO configuration,particularly the wave front sensing scheme.Utilizing analytic method,we simulate the performance of both classical AO and GLAO systems,optimize the wave front sensing system,and evaluate GLAO performance in terms of PSF uniformity and correction improvement across whole FOV.The results indicate that,the classical AO will achieve diffraction-limited resolution;the suggested GLAO configuration will uniformly improve the seeing across the full 5′×5′FOV,reducing the FWHM across the axis FOV to less than0.3″(λ≥705 nm,r0≥11 cm),which is more than two times improvement.The specially designed wave front sensor schedule offers new potential for WeHoST’s GLAO,particularly the multi-FOV GLAO and the flexibility to select the detected area.These capabilities will significantly enhance the scientific output of the telescope.展开更多
This study examines the effectiveness of adaptive observation experiments using the ensemble transformation sensitivity(ETS) method to improve precipitation forecasts during heavy rainfall events in South China and th...This study examines the effectiveness of adaptive observation experiments using the ensemble transformation sensitivity(ETS) method to improve precipitation forecasts during heavy rainfall events in South China and the Sichuan Basin. High-resolution numerical models are employed to simulate adaptive observations. By identifying the sensitive areas of key weather system positions 42 hours before heavy rainfall events, the adaptive observations improve the prediction of jet streams, strong winds, and shear lines, which are essential for accurate heavy rainfall forecasting. This improvement is reflected in both the precipitation structure and location accuracy within the verification region. In South China, targeted observations enhance rainfall predictions by improving water vapor transport. In the Sichuan Basin, adaptive observations refine water vapor transport and adjust vortex dynamics. This research highlights the importance of accurately predicting shear lines and jet streams for forecasting heavy rainfall in these areas. Overall, this study found that adaptive observation enhances the precipitation forecast skills of the structure and location for heavy rainfall in South China and the Sichuan Basin, emphasizing their potential utility in operational numerical weather prediction.展开更多
We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement ti...We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.展开更多
The intrinsic resistance of MRSA coupled with biofilm antibiotic tolerance challenges the antibiotic treatment of MRSA biofilm infections.Phytochemical-based nanoplatform is a promising emerging approach for treatment...The intrinsic resistance of MRSA coupled with biofilm antibiotic tolerance challenges the antibiotic treatment of MRSA biofilm infections.Phytochemical-based nanoplatform is a promising emerging approach for treatment of biofilm infection.However,their therapeutic efficacy was restricted by the low drug loading capacity and lack of selectivity.Herein,we constructed a surface charge adaptive phytochemical-based nanoparticle with high isoliquiritigenin(ISL)loading content for effective treatment of MRSA biofilm.A dimeric ISL prodrug(ISL-G2)bearing a lipase responsive ester bond was synthesized,and then encapsulated into the amphiphilic quaternized oligochitosan.The obtained ISL-G2loaded NPs possessed positively charged surface,which allowed cis-aconityl-D-tyrosine(CA-Tyr)binding via electrostatic interaction to obtain ISL-G2@TMDCOS-Tyr NPs.The NPs maintained their negatively charged surface,thus prolonging the blood circulation time.In response to low pH in the biofilms,the fast removal of CA-Tyr led to a shift in their surface charge from negative to positive,which enhanced the accumulation and penetration of NPs in the biofilms.Sequentially,the pH-triggered release of D-tyrosine dispersed the biofilm and lipase-triggered released of ISL effectively kill biofilm MRSA.An in vivo study was performed on a MRSA biofilm infected wound model.This phytochemical-based system led to~2log CFU(>99%)reduction of biofilm MRSA as compared to untreated wound(P<0.001)with negligible biotoxicity in mice.This phytochemical dimer nanoplatform shows great potential for long-term treatment of resistant bacterial infections.展开更多
The solving of dynamic matrix square root(DMSR)problems is frequently encountered in many scientific and engineering fields.Although the original zeroing neural network is powerful for solving the DMSR,it cannot vanis...The solving of dynamic matrix square root(DMSR)problems is frequently encountered in many scientific and engineering fields.Although the original zeroing neural network is powerful for solving the DMSR,it cannot vanish the influence of the noise perturbations,and its constant-coefficient design scheme cannot accelerate the convergence speed.Therefore,a noise-tolerate and adaptive coefficient zeroing neural network(NTACZNN)is raised to enhance the robust noise immunity performance and accelerate the conver-gence speed simultaneously.Then,the global convergence and robustness of the pro-posed NTACZNN are theoretically analysed under an ideal environment and noise-perturbed circumstances.Furthermore,some illustrative simulation examples are designed and performed in order to substantiate the efficacy and advantage of the NTACZNN for the DMSR problem solution.Compared with some existing ZNNs,the proposed NTACZNN possesses advanced performance in terms of noise tolerance,solution accuracy,and convergence rate.展开更多
Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic a...Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic actuator.Although various control methods have been employed to improve the tracking precision of the dynamic system,optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive.This study presents an adaptive back-stepping sliding mode controller(ABSMC)to enhance the trajectory tracking precision,where the virtual control law is constructed to replace the position error.The adaptive control theory is introduced in back-stepping controller design to compensate for the model uncertainties and time-varying disturbances.Based on Lyapunov theory,the finite-time convergence of the position tracking errors is proved.Furthermore,the effectiveness of the developed control scheme is conducted via extensive comparative experiments.展开更多
Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyc...Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyces cerevisiae strains.Development of industrial S.cerevisiae strains with high tolerance towards these inhibitors is thus critical for efficient lignocellulosic ethanol production.In this study,the acetic acid or furfural tolerance of different S.cerevisiae strains could be significantly enhanced after adaptive evolution via serial cultivation for 40 generations under stress conditions.The acetic acid-based adaptive strain SPSC01-TA9 produced 30.5 g·L^(-1)ethanol with a yield of 0.46 g·g^(-1)in the presence of 9 g·L^(-1)acetic acid,while the acetic acid/furfural-based adaptive strain SPSC01-TAF94 produced more ethanol of 36.2 g·L^(-1)with increased yield up to 0.49 g·g^(-1)in the presence of both 9 g·L^(-1)acetic acid and 4 g·L^(-1)furfural.Significant improvements were also observed during non-detoxified corn stover hydrolysate culture by SPSC01-TAF94,which achieved ethanol production and yield of 29.1 g·L^(-1)and 0.49 g·g^(-1),respectively,the growth and fermentation efficiency of acetic acid/furfural-based adaptive strain in hydrolysate was 95%higher than those of wildtype strains,indicating the acetic acid-and furfural-based adaptive evolution strategy could be an effective approach for improving lignocellulosic ethanol production.The adapted strains developed in this study with enhanced tolerance against acetic acid and furfural could be potentially contribute to economically feasible and sustainable lignocellulosic biorefinery.展开更多
The parafoveal area,with its high concentration of photoreceptors andfine retinal capillaries,is crucial for central vision and often exhibits early signs of pathological changes.The current adaptive optics scanning l...The parafoveal area,with its high concentration of photoreceptors andfine retinal capillaries,is crucial for central vision and often exhibits early signs of pathological changes.The current adaptive optics scanning laser ophthalmoscope(AOSLO)provides an excellent tool to acquire accurate and detailed information about the parafoveal area with cellular resolution.However,limited by the scanning speed of two-dimensional scanning,thefield of view(FOV)in the AOSLO system was usually less than or equal to 2,and the stitching for the parafoveal area required dozens of images,which was time-consuming and laborious.Unfortunately,almost half of patients are unable to obtain stitched images because of their poorfixation.To solve this problem,we integrate AO technology with the line-scan imaging method to build an adaptive optics line scanning ophthalmoscope(AOLSO)system with a larger FOV.In the AOLSO,afocal spherical mirrors in pairs are nonplanar arranged and the distance and angle between optical elements are optimized to minimize the aberrations,two cylinder lenses are orthogonally placed before the imaging sensor to stretch the point spread function(PSF)for sufficiently digitizing light energy.Captured human retinal images show the whole parafoveal area with 55FOV,60 Hz frame rate and cellular resolutions.Take advantage of the 5FOV of the AOLSO,only 9 frames of the retina are captured with several minutes to stitch a montage image with an FOV of 99,in which photoreceptor counting is performed within approximately 5eccentricity.The AOLSO system not only provides cellular resolution but also has the capability to capture the parafoveal region in a single frame,which offers great potential for noninvasive studying of the parafoveal area.展开更多
Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.I...Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance.展开更多
基金funded by the National Natural Science Foundation of China(General Program:No.52074314,No.U19B6003-05)National Key Research and Development Program of China(2019YFA0708303-05)。
文摘Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.
基金supported by the National Science Fund for Distinguished Young Scholars (62225303)the Fundamental Research Funds for the Central Universities (buctrc202201)+1 种基金China Scholarship Council,and High Performance Computing PlatformCollege of Information Science and Technology,Beijing University of Chemical Technology。
文摘In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
基金supported by the National Natural Science Foundation of China(Grant No.62277032,62231017,62071254)Education Scientific Planning Project of Jiangsu Province(Grant No.B/2022/01/150)Jiangsu Provincial Qinglan Project,the Special Fund for Urban and Rural Construction and Development in Jiangsu Province.
文摘More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and they cannot make effective use of the mixed information generated by multi-user when exploring users’potential interests.To solve these problems,this paper proposes an adaptive program recommendation system for multi-user sharing environment.Specifically,we first design an offline periodic identification module by building multi-user features and periodically predicting target user in future sessions,which can separate the profile of target user from mixed log records.Subsequently,an online recommendation module with adaptive timevarying exploration strategy is constructed by jointly using personal information and multi-user social information provided by identification module.On one hand,to learn the dynamic changes in user-interest,a time-varying linear upper confidence bound(LinUCB)based on personal information is designed.On the other hand,to reduce the risk of exploration,a timeinvariant LinUCB based on separated multi-user social information from one account/device is proposed to compute the quality scores of programs for each user,which is integrated into the time-varying LinUCB by cross-weighting strategy.Finally,experimental results validate the efficiency of the proposed scheme.
基金funded by the National Natural Science Foundation of China(11727805,12103057)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021378).
文摘Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.
基金partially supported by the Natural Science Foundation of China (Grant Nos.62103052,52272358)partially supported by the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.
基金National Natural Science Foundation of China,Grant/Award Number:62272114Joint Research Fund of Guangzhou and University,Grant/Award Number:202201020380+3 种基金Guangdong Higher Education Innovation Group,Grant/Award Number:2020KCXTD007Pearl River Scholars Funding Program of Guangdong Universities(2019)National Key R&D Program of China,Grant/Award Number:2022ZD0119602Major Key Project of PCL,Grant/Award Number:PCL2022A03。
文摘As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improvement of all clients;however,the overall performance improvement often sacrifices the performance of certain clients,such as clients with less data.Ignoring fairness may greatly reduce the willingness of some clients to participate in federated learning.In order to solve the above problem,the authors propose Ada-FFL,an adaptive fairness federated aggregation learning algorithm,which can dynamically adjust the fairness coefficient according to the update of the local models,ensuring the convergence performance of the global model and the fairness between federated learning clients.By integrating coarse-grained and fine-grained equity solutions,the authors evaluate the deviation of local models by considering both global equity and individual equity,then the weight ratio will be dynamically allocated for each client based on the evaluated deviation value,which can ensure that the update differences of local models are fully considered in each round of training.Finally,by combining a regularisation term to limit the local model update to be closer to the global model,the sensitivity of the model to input perturbations can be reduced,and the generalisation ability of the global model can be improved.Through numerous experiments on several federal data sets,the authors show that our method has more advantages in convergence effect and fairness than the existing baselines.
基金supported by the National Natural Science Foundation of China (6207319761933006)National International Science and Technology Cooperation Base on Railway Vehicle Operation Engineering of Beijing Jiaotong University (BMRV20KF08)。
文摘An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic performance. Notably, the performance of the output error is confined in an envelope characterized by exponential convergence, leading to convergence to zero. This feature ensures a prompt response from admittance control and establishes a reliable safety framework for interactions. Simulation results provide practical insights,demonstrating the viability of the control scheme proposed in this paper.
基金supported by the National Natural Science Foundation of China(12103057,12127901)the Frontier Research Fund of the Institute of Optics and Electronics,Chinese Academy of Sciences(C21K002)+1 种基金the Youth Innovation Promotion Association,Chinese Academy of Sciences(2021378)the National Natural Science Foundation of China(U2031148)。
文摘The 2.5 m wide-field and high-resolution solar telescope(WeHoST)is currently under developing for solar observations.WeHoST aims to achieve high-resolution observations over a super-wide field of view(FOV)of5′×5′,and a desired resolution of 0.3″.To meet the scientific requirements of WeHoST,the ground-layer adaptive optics(GLAO)with a specially designed wave front sensing system is as the primary consideration.We introduce the GLAO configuration,particularly the wave front sensing scheme.Utilizing analytic method,we simulate the performance of both classical AO and GLAO systems,optimize the wave front sensing system,and evaluate GLAO performance in terms of PSF uniformity and correction improvement across whole FOV.The results indicate that,the classical AO will achieve diffraction-limited resolution;the suggested GLAO configuration will uniformly improve the seeing across the full 5′×5′FOV,reducing the FWHM across the axis FOV to less than0.3″(λ≥705 nm,r0≥11 cm),which is more than two times improvement.The specially designed wave front sensor schedule offers new potential for WeHoST’s GLAO,particularly the multi-FOV GLAO and the flexibility to select the detected area.These capabilities will significantly enhance the scientific output of the telescope.
基金jointly supported by the Guangdong Province University Student Innovation and Entrepreneurship Project (580520049)the Guangdong Ocean University Scientific Research Startup Fund (R20021)the Key Laboratory of Plateau and Basin Rainstorm and Drought Disasters in Sichuan Province Open Research Fund (SZKT201902)。
文摘This study examines the effectiveness of adaptive observation experiments using the ensemble transformation sensitivity(ETS) method to improve precipitation forecasts during heavy rainfall events in South China and the Sichuan Basin. High-resolution numerical models are employed to simulate adaptive observations. By identifying the sensitive areas of key weather system positions 42 hours before heavy rainfall events, the adaptive observations improve the prediction of jet streams, strong winds, and shear lines, which are essential for accurate heavy rainfall forecasting. This improvement is reflected in both the precipitation structure and location accuracy within the verification region. In South China, targeted observations enhance rainfall predictions by improving water vapor transport. In the Sichuan Basin, adaptive observations refine water vapor transport and adjust vortex dynamics. This research highlights the importance of accurately predicting shear lines and jet streams for forecasting heavy rainfall in these areas. Overall, this study found that adaptive observation enhances the precipitation forecast skills of the structure and location for heavy rainfall in South China and the Sichuan Basin, emphasizing their potential utility in operational numerical weather prediction.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2020MF119 and ZR2020MA082)the National Natural Science Foundation of China(Grant No.62002208)the National Key Research and Development Program of China(Grant No.2018YFB0504302).
文摘We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.
基金supported by the National Natural Science Foundation of China(No.3210190403)the Natural Science Foundation of Heilongjiang Province(No.YQ2022C016)+2 种基金the China Postdoctoral Science Foundation(2022T150104and 2020M670877)the Postdoctoral Science Foundation of Heilongjiang Province(LBH-TZ2104 and LBH-Z20039)the China Agriculture Research System of MOF and MARA(No.CARS-35)。
文摘The intrinsic resistance of MRSA coupled with biofilm antibiotic tolerance challenges the antibiotic treatment of MRSA biofilm infections.Phytochemical-based nanoplatform is a promising emerging approach for treatment of biofilm infection.However,their therapeutic efficacy was restricted by the low drug loading capacity and lack of selectivity.Herein,we constructed a surface charge adaptive phytochemical-based nanoparticle with high isoliquiritigenin(ISL)loading content for effective treatment of MRSA biofilm.A dimeric ISL prodrug(ISL-G2)bearing a lipase responsive ester bond was synthesized,and then encapsulated into the amphiphilic quaternized oligochitosan.The obtained ISL-G2loaded NPs possessed positively charged surface,which allowed cis-aconityl-D-tyrosine(CA-Tyr)binding via electrostatic interaction to obtain ISL-G2@TMDCOS-Tyr NPs.The NPs maintained their negatively charged surface,thus prolonging the blood circulation time.In response to low pH in the biofilms,the fast removal of CA-Tyr led to a shift in their surface charge from negative to positive,which enhanced the accumulation and penetration of NPs in the biofilms.Sequentially,the pH-triggered release of D-tyrosine dispersed the biofilm and lipase-triggered released of ISL effectively kill biofilm MRSA.An in vivo study was performed on a MRSA biofilm infected wound model.This phytochemical-based system led to~2log CFU(>99%)reduction of biofilm MRSA as compared to untreated wound(P<0.001)with negligible biotoxicity in mice.This phytochemical dimer nanoplatform shows great potential for long-term treatment of resistant bacterial infections.
基金Natural Science Foundation of Guangdong Province,Grant/Award Number:2021A1515011847Special Project in Key Fields of Universities in Department of Education of Guangdong Province,Grant/Award Number:2019KZDZX1036+3 种基金Demonstration Bases for Joint Training of Postgraduates of Department of Education of Guangdong Province,Grant/Award Number:202205Key Lab of Digital Signal and Image Processing of Guangdong Province,Grant/Award Number:2019GDDSIPL-01Innovation and Entrepreneurship Training Program for College Students of Guangdong Ocean University,Grant/Award Number:202210566028Postgraduate Education Innovation Plan Project of Guangdong Ocean University,Grant/Award Numbers:202214,202250,202251,202160。
文摘The solving of dynamic matrix square root(DMSR)problems is frequently encountered in many scientific and engineering fields.Although the original zeroing neural network is powerful for solving the DMSR,it cannot vanish the influence of the noise perturbations,and its constant-coefficient design scheme cannot accelerate the convergence speed.Therefore,a noise-tolerate and adaptive coefficient zeroing neural network(NTACZNN)is raised to enhance the robust noise immunity performance and accelerate the conver-gence speed simultaneously.Then,the global convergence and robustness of the pro-posed NTACZNN are theoretically analysed under an ideal environment and noise-perturbed circumstances.Furthermore,some illustrative simulation examples are designed and performed in order to substantiate the efficacy and advantage of the NTACZNN for the DMSR problem solution.Compared with some existing ZNNs,the proposed NTACZNN possesses advanced performance in terms of noise tolerance,solution accuracy,and convergence rate.
基金supported by the fund of Henan Key Laboratory of Superhard Abrasives and Grinding Equipment,Henan University of Technology(Grant No.JDKFJJ2023005)the Key Science and Technology Program of Henan Province(Grant Nos.242102221001 and 232102220085)the Science and Technology Key Project Foundation of Henan Provincial Education Department(Grant No.23A460014).
文摘Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic actuator.Although various control methods have been employed to improve the tracking precision of the dynamic system,optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive.This study presents an adaptive back-stepping sliding mode controller(ABSMC)to enhance the trajectory tracking precision,where the virtual control law is constructed to replace the position error.The adaptive control theory is introduced in back-stepping controller design to compensate for the model uncertainties and time-varying disturbances.Based on Lyapunov theory,the finite-time convergence of the position tracking errors is proved.Furthermore,the effectiveness of the developed control scheme is conducted via extensive comparative experiments.
基金supported by the National Key Research and Development Program of China(2021YFC2101303)the National Natural Science Foundation of China(U22A20424 and 22378048)+6 种基金the Major Scientific and Technological Projects of Sinopecthe Dalian Technology Talents Project for Distinguished Young Scholars(2021RJ03)the Yunnan Provincial Rural Energy Engineering Key Laboratory(2022KF003)the National Natural Science Foundation of Liaoning Province(2023-MS-110)the Liaoning Revitalization Talents Program(XLYC2202049)the Fundamental Research Funds for the Central Universities(DUT22LK22)the CAS Key Laboratory of Renewable Energy,Guangzhou Institute of Energy Conversion(E229kf0401)。
文摘Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyces cerevisiae strains.Development of industrial S.cerevisiae strains with high tolerance towards these inhibitors is thus critical for efficient lignocellulosic ethanol production.In this study,the acetic acid or furfural tolerance of different S.cerevisiae strains could be significantly enhanced after adaptive evolution via serial cultivation for 40 generations under stress conditions.The acetic acid-based adaptive strain SPSC01-TA9 produced 30.5 g·L^(-1)ethanol with a yield of 0.46 g·g^(-1)in the presence of 9 g·L^(-1)acetic acid,while the acetic acid/furfural-based adaptive strain SPSC01-TAF94 produced more ethanol of 36.2 g·L^(-1)with increased yield up to 0.49 g·g^(-1)in the presence of both 9 g·L^(-1)acetic acid and 4 g·L^(-1)furfural.Significant improvements were also observed during non-detoxified corn stover hydrolysate culture by SPSC01-TAF94,which achieved ethanol production and yield of 29.1 g·L^(-1)and 0.49 g·g^(-1),respectively,the growth and fermentation efficiency of acetic acid/furfural-based adaptive strain in hydrolysate was 95%higher than those of wildtype strains,indicating the acetic acid-and furfural-based adaptive evolution strategy could be an effective approach for improving lignocellulosic ethanol production.The adapted strains developed in this study with enhanced tolerance against acetic acid and furfural could be potentially contribute to economically feasible and sustainable lignocellulosic biorefinery.
基金supported by the National Natural Science Foundation of China under Grant No.62075235,National Key R&D Program of China under Grant No.2021YFF0700700Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City under Grant No.ZXL2021425+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No.2019320Innovation of Scientific Research Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDA15021304.
文摘The parafoveal area,with its high concentration of photoreceptors andfine retinal capillaries,is crucial for central vision and often exhibits early signs of pathological changes.The current adaptive optics scanning laser ophthalmoscope(AOSLO)provides an excellent tool to acquire accurate and detailed information about the parafoveal area with cellular resolution.However,limited by the scanning speed of two-dimensional scanning,thefield of view(FOV)in the AOSLO system was usually less than or equal to 2,and the stitching for the parafoveal area required dozens of images,which was time-consuming and laborious.Unfortunately,almost half of patients are unable to obtain stitched images because of their poorfixation.To solve this problem,we integrate AO technology with the line-scan imaging method to build an adaptive optics line scanning ophthalmoscope(AOLSO)system with a larger FOV.In the AOLSO,afocal spherical mirrors in pairs are nonplanar arranged and the distance and angle between optical elements are optimized to minimize the aberrations,two cylinder lenses are orthogonally placed before the imaging sensor to stretch the point spread function(PSF)for sufficiently digitizing light energy.Captured human retinal images show the whole parafoveal area with 55FOV,60 Hz frame rate and cellular resolutions.Take advantage of the 5FOV of the AOLSO,only 9 frames of the retina are captured with several minutes to stitch a montage image with an FOV of 99,in which photoreceptor counting is performed within approximately 5eccentricity.The AOLSO system not only provides cellular resolution but also has the capability to capture the parafoveal region in a single frame,which offers great potential for noninvasive studying of the parafoveal area.
文摘Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance.