期刊文献+
共找到776篇文章
< 1 2 39 >
每页显示 20 50 100
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:10
1
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 particle swarm optimization Genetic algorithm Random inertia weight multi-objective reservoir operation Reservoir group Panjiakou Reservoir
下载PDF
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
2
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 particle swarm algorithm chaotic SEQUENCES SELF-adaptive STRATEGY multi-objective optimization
下载PDF
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
3
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
4
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 Improved particle swarm optimization algorithm Double POPULATIONS multi-objective adaptive Strategy chaotic SEQUENCE
下载PDF
Particle Swarm Optimization Algorithm vs Genetic Algorithm to Develop Integrated Scheme for Obtaining Optimal Mechanical Structure and Adaptive Controller of a Robot
5
作者 Rega Rajendra Dilip K. Pratihar 《Intelligent Control and Automation》 2011年第4期430-449,共20页
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipula... The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected. 展开更多
关键词 MANIPULATOR optimAL Structure adaptive CONTROLLER GENETIC algorithm NEURAL Networks particle swarm optimization
下载PDF
Research on Optimization of Freight Train ATO Based on Elite Competition Multi-Objective Particle Swarm Optimization 被引量:1
6
作者 Lingzhi Yi Renzhe Duan +3 位作者 Wang Li Yihao Wang Dake Zhang Bo Liu 《Energy and Power Engineering》 2021年第4期41-51,共11页
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ... <div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div> 展开更多
关键词 Freight Train Automatic Train Operation Dynamics Model Competitive multi-objective particle swarm optimization algorithm (CMOPSO) multi-objective optimization
下载PDF
Design of Radial Basis Function Network Using Adaptive Particle Swarm Optimization and Orthogonal Least Squares 被引量:1
7
作者 Majid Moradi Zirkohi Mohammad Mehdi Fateh Ali Akbarzade 《Journal of Software Engineering and Applications》 2010年第7期704-708,共5页
This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Le... This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Least Squares algorithm (OLS) called as OLS-AVURPSO method. The novelty is to develop an AVURPSO algorithm to form the hybrid OLS-AVURPSO method for designing an optimal RBFN. The proposed method at the upper level finds the global optimum of the spread factor parameter using AVURPSO while at the lower level automatically constructs the RBFN using OLS algorithm. Simulation results confirm that the RBFN is superior to Multilayered Perceptron Network (MLPN) in terms of network size and computing time. To demonstrate the effectiveness of proposed OLS-AVURPSO in the design of RBFN, the Mackey-Glass Chaotic Time-Series as an example is modeled by both MLPN and RBFN. 展开更多
关键词 RADIAL BASIS Function Network ORTHOGONAL Least SQUARES algorithm particle swarm optimization Mackey-Glass chaotic Time-Series
下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
8
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
下载PDF
A Hybrid Differential Evolution Algorithm Integrated with Particle Swarm Optimization
9
作者 范勤勤 颜学峰 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期197-200,共4页
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti... To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best. 展开更多
关键词 differential evolution algorithm particle swann optimization SELF-adaptive CO-EVOLUTION
下载PDF
Milling Parameters Optimization of Al-Li Alloy Thin-Wall Workpieces Using Response Surface Methodology and Particle Swarm Optimization 被引量:2
10
作者 Haitao Yue Chenguang Guo +2 位作者 Qiang Li Lijuan Zhao Guangbo Hao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期937-952,共16页
To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based... To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based on Response Surface Methodology was carried out.The single factor and interaction of milling parameters on surface roughness and specific cutting energy were analyzed,and the multi-objective optimization model was constructed.The Multiobjective Particle Swarm Optimization algorithm introducing the Chaos Local Search algorithm and the adaptive inertial weight was applied to determine the optimal combination of milling parameters.It was observed that surface roughness was mainly influenced by feed per tooth,and specific cutting energy was negatively correlated with feed per tooth,radial cutting depth and axial cutting depth,while cutting speed has a non-significant influence on specific cutting energy.The optimal combination of milling parameters with different priorities was obtained.The experimental results showed that the maximum relative error of measured and predicted values was 8.05%,and the model had high reliability,which ensured the low surface roughness and cutting energy consumption.It was of great guiding significance for the success of Al-Li alloy thin-wall milling with a high precision and energy efficiency. 展开更多
关键词 Al-Li alloy thin-wall workpieces response surface methodology surface roughness specific cutting energy multi-objective particle swarm optimization algorithm
下载PDF
Optimization of Adaptive Fuzzy Controller for Maximum Power Point Tracking Using Whale Algorithm
11
作者 Mehrdad Ahmadi Kamarposhti Hassan Shokouhandeh +1 位作者 Ilhami Colak Kei Eguchi 《Computers, Materials & Continua》 SCIE EI 2022年第12期5041-5061,共21页
The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point d... The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm. 展开更多
关键词 Maximum power tracking photovoltaic system adaptive fuzzy control whale optimization algorithm particle swarm optimization
下载PDF
Quantum particle swarm optimization for micro-grid system with consideration of consumer satisfaction and benefit of generation side
12
作者 LU Xiaojuan CAO Kai GAO Yunbo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期83-92,共10页
Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of... Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery. 展开更多
关键词 micro-grid system consumer satisfaction benefit of power generation side time-of-use electricity price multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)
下载PDF
Dynamic Multi-objective Optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
13
作者 杜文莉 王珊珊 +1 位作者 陈旭 钱锋 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期184-189,共6页
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro... Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems. 展开更多
关键词 dynamic multi-objective optimization bare-bones particle swarm optimization(PSO) algorithm chemical process
下载PDF
Interactive Multi-objective Optimization Design for the Pylon Structure of an Airplane 被引量:4
14
作者 An Weigang Li Weiji 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第6期524-528,共5页
The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will ... The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will be unacceptable in engineering practice due to the large amount of evaluation needed for the algorithm. So, a new interactive optimization algorithm-interactive multi-objective particle swarm optimization (IMOPSO) is presented. IMOPSO is efficient, simple and operable. The decision-maker can expediently determine the accurate preference in IMOPSO. IMOPSO is used to perform the pylon structure optimization design of an airplane, and a satisfactory design is achieved after only 12 generations of IMOPSO evolutions. Compared with original design, the maximum displacement of the satisfactory design is reduced, and the mass of the satisfactory design is decreased for 22%. 展开更多
关键词 pylon structure multi-objective optimization algorithm interactive algorithm multi-objective particle swarm optimization neural network
下载PDF
Improved Prediction of Metamaterial Antenna Bandwidth Using Adaptive Optimization of LSTM 被引量:1
15
作者 Doaa Sami Khafaga Amel Ali Alhussan +4 位作者 El-Sayed M.El-kenawy Abdelhameed Ibrahim Said H.Abd Elkhalik Shady Y.El-Mashad Abdelaziz A.Abdelhamid 《Computers, Materials & Continua》 SCIE EI 2022年第10期865-881,共17页
The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant... The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models. 展开更多
关键词 Metamaterial antenna long short term memory(LSTM) guided whale optimization algorithm(Guided WOA) adaptive dynamic particle swarm algorithm(AD-PSO)
下载PDF
Adaptive candidate estimation-assisted multi-objective particle swarm optimization 被引量:7
16
作者 HAN HongGui ZHANG LinLin +1 位作者 HOU Ying QIAO JunFei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第8期1685-1699,共15页
The selection of global best(Gbest) exerts a high influence on the searching performance of multi-objective particle swarm optimization algorithm(MOPSO). The candidates of MOPSO in external archive are always estimate... The selection of global best(Gbest) exerts a high influence on the searching performance of multi-objective particle swarm optimization algorithm(MOPSO). The candidates of MOPSO in external archive are always estimated to select Gbest. However,in most estimation methods, the candidates are considered as the Gbest in a fixed way, which is difficult to adapt to varying evolutionary requirements for balance between convergence and diversity of MOPSO. To deal with this problem, an adaptive candidate estimation-assisted MOPSO(ACE-MOPSO) is proposed in this paper. First, the evolutionary state information,including both the global dominance information and global distribution information of non-dominated solutions, is introduced to describe the evolutionary states to extract the evolutionary requirements. Second, an adaptive candidate estimation method,based on two evaluation distances, is developed to select the excellent leader for balancing convergence and diversity during the dynamic evolutionary process. Third, a leader mutation strategy, using the elite local search(ELS), is devised to select Gbest to improve the searching ability of ACE-MOPSO. Fourth, the convergence analysis is given to prove the theoretical validity of ACE-MOPSO. Finally, this proposed algorithm is compared with popular algorithms on twenty-four benchmark functions. The results demonstrate that ACE-MOPSO has advanced performance in both convergence and diversity. 展开更多
关键词 multi-objective particle swarm optimization evolutionary state information adaptive candidate estimation convergence and diversity convergence analysis
原文传递
Design Optimization of Permanent Magnet Eddy Current Coupler Based on an Intelligence Algorithm
17
作者 Dazhi Wang Pengyi Pan Bowen Niu 《Computers, Materials & Continua》 SCIE EI 2023年第11期1535-1555,共21页
The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to ... The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to the load and generates heat and losses,reducing its energy transfer efficiency.This issue has become an obstacle for PMEC to develop toward a higher power.This paper aims to improve the overall performance of PMEC through multi-objective optimization methods.Firstly,a PMEC modeling method based on the Levenberg-Marquardt back propagation(LMBP)neural network is proposed,aiming at the characteristics of the complex input-output relationship and the strong nonlinearity of PMEC.Then,a novel competition mechanism-based multi-objective particle swarm optimization algorithm(NCMOPSO)is proposed to find the optimal structural parameters of PMEC.Chaotic search and mutation strategies are used to improve the original algorithm,which improves the shortcomings of multi-objective particle swarm optimization(MOPSO),which is too fast to converge into a global optimum,and balances the convergence and diversity of the algorithm.In order to verify the superiority and applicability of the proposed algorithm,it is compared with several popular multi-objective optimization algorithms.Applying them to the optimization model of PMEC,the results show that the proposed algorithm has better comprehensive performance.Finally,a finite element simulation model is established using the optimal structural parameters obtained by the proposed algorithm to verify the optimization results.Compared with the prototype,the optimized PMEC has reduced eddy current losses by 1.7812 kW,increased output torque by 658.5 N·m,and decreased costs by 13%,improving energy transfer efficiency. 展开更多
关键词 Competition mechanism Levenberg-Marquardt back propagation neural network multi-objective particle swarm optimization algorithm permanent magnet eddy current coupler
下载PDF
Hybrid Multi-Object Optimization Method for Tapping Center Machines
18
作者 Ping-Yueh Chang Fu-I Chou +1 位作者 Po-Yuan Yang Shao-Hsien Chen 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期23-38,共16页
This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the r... This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the rigid tapping parameters and minimize the synchronization errors and cycle times of computer numerical control(CNC)machines.First,rigid tapping parameters and uniform(including 41-level and 19-level)layouts were adopted to collect representative data for modeling.Next,ANFIS was used to build the model for the collected 41-level and 19-level uniform layout experiment data.In tapping center machines,the synchronization errors and cycle times are important consid-erations,so these two objects were used to build the ANFIS models.Then,a MOPSO algorithm was used to search for the optimal parameter combinations for the two ANFIS models simultaneously.The experimental results showed that the proposed method obtains suitable parameter values and optimal parameter combinations compared with the nonsystematic method.Additionally,the optimal parameter combination was used to optimize existing CNC tools during the commissioning process.Adjusting the proportional and integral gains of the spindle could improve resistance to deformation during rigid tapping.The posi-tion gain and prefeedback coefficient can reduce the synchronization errors significantly,and the acceleration and deceleration times of the spindle affect both the machining time and synchronization errors.The proposed method can quickly and accurately minimize synchronization errors from 107 to 19.5 pulses as well as the processing time from 3,600 to 3,248 ms;it can also shorten the machining time significantly and reduce simultaneous errors to improve tapping yield,there-by helping factories achieve carbon reduction. 展开更多
关键词 Tapping center machine uniform design adaptive network-based fuzzy inference system(ANFIS) multi-objective particle swarm optimizer
下载PDF
Performance Evaluation and Comparison of Multi - Objective Optimization Algorithms for the Analytical Design of Switched Reluctance Machines
19
作者 Shen Zhang Sufei Li +1 位作者 Ronald G.Harley Thomas G.Habetler 《CES Transactions on Electrical Machines and Systems》 2017年第1期58-65,共8页
This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of... This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of electric machine design problems are discussed,followed by benchmark studies comparing generic algorithms(GA),differential evolution(DE)algorithms and particle swarm optimizations(PSO)on a 6/4 switched reluctance machine design with seven independent variables and a strong nonlinear multi-objective Pareto front.To better quantify the quality of the Pareto fronts,five primary quality indicators are employed to serve as the algorithm testing metrics.The results show that the three algorithms have similar performances when the optimization employs only a small number of candidate designs or ultimately,a significant amount of candidate designs.However,DE tends to perform better in terms of convergence speed and the quality of Pareto front when a relatively modest amount of candidates are considered. 展开更多
关键词 Design methodology differential evolution(DE) generic algorithm(GA) multi-objective optimization algorithms particle swarm optimization(PSO) switched reluctance machines
下载PDF
An Optimization Capacity Design Method of Wind/Photovoltaic/Hydrogen Storage Power System Based on PSO-NSGA-II
20
作者 Lei Xing Yakui Liu 《Energy Engineering》 EI 2023年第4期1023-1043,共21页
The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,th... The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,the optimization results of heuristic algorithms are usually influenced by the choice of hyperparameters.To solve the above problem,the particle swarm algorithm is introduced to find the optimal hyperparameters of the heuristic algorithms.Firstly,an integrated energy system consisting of the photovoltaic,wind turbine,electrolysis cell,hydrogen storage tank,and energy storage is established.Meanwhile,the minimum economic cost,the maximum wind and PV power consumption rate,and the minimum load shortage rate are considered to be the objective functions.Then,a hybrid method combined the particle swarm combined with non-dominated sorting genetic algorithms-II is proposed to solve the optimal allocation problem.According to the optimal result,the economic cost is 6.3 million RMB,and the load shortage rate is 9.83%.Finally,four comparative experiments are conducted to verify the superiority-seeking ability of the proposed method.The comparative results indicate that the proposed method possesses a strongermerit-seeking ability,resulting in a solution satisfaction rate of 87.37%,which is higher than that of the unimproved non-dominated sorting genetic algorithms-II. 展开更多
关键词 multi-objective optimization wind/photovoltaic/hydrogen power system particle swarm algorithm non-dominated sorting genetic algorithms-II
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部