期刊文献+
共找到106,608篇文章
< 1 2 250 >
每页显示 20 50 100
An adaptive physics-informed deep learning method for pore pressure prediction using seismic data 被引量:2
1
作者 Xin Zhang Yun-Hu Lu +2 位作者 Yan Jin Mian Chen Bo Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期885-902,共18页
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g... Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data. 展开更多
关键词 Pore pressure prediction Seismic data 1D convolution pyramid pooling adaptive physics-informed loss function High generalization capability
下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:1
2
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
下载PDF
Automatic modulation recognition of radio fuzes using a DR2D-based adaptive denoising method and textural feature extraction 被引量:1
3
作者 Yangtian Liu Xiaopeng Yan +2 位作者 Qiang Liu Tai An Jian Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期328-338,共11页
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n... The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs. 展开更多
关键词 Automatic modulation recognition adaptive denoising Data rearrangement and the 2D FFT(DR2D) Radio fuze
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:2
4
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
An Adaptive Program Recommendation System for Multi-User Sharing Environment
5
作者 Sun Shiyun Hu Zhengying +1 位作者 Wei Xin Zhou Liang 《China Communications》 SCIE CSCD 2024年第6期112-128,共17页
More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and ... More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and they cannot make effective use of the mixed information generated by multi-user when exploring users’potential interests.To solve these problems,this paper proposes an adaptive program recommendation system for multi-user sharing environment.Specifically,we first design an offline periodic identification module by building multi-user features and periodically predicting target user in future sessions,which can separate the profile of target user from mixed log records.Subsequently,an online recommendation module with adaptive timevarying exploration strategy is constructed by jointly using personal information and multi-user social information provided by identification module.On one hand,to learn the dynamic changes in user-interest,a time-varying linear upper confidence bound(LinUCB)based on personal information is designed.On the other hand,to reduce the risk of exploration,a timeinvariant LinUCB based on separated multi-user social information from one account/device is proposed to compute the quality scores of programs for each user,which is integrated into the time-varying LinUCB by cross-weighting strategy.Finally,experimental results validate the efficiency of the proposed scheme. 展开更多
关键词 adaptive EXPLOITATION LinUCB MULTIUSER recommendation system
下载PDF
Solar adaptive optics systems for the New Vacuum Solar Telescope at the Fuxian Lake Solar Observatory
6
作者 Lanqiang Zhang Xuejun Rao +8 位作者 Hua Bao Youming Guo Jinsheng Yang Nanfei Yan Xian Ran Dingkang Tong Xinlong Fan Zhongyi Feng Changhui Rao 《Astronomical Techniques and Instruments》 CSCD 2024年第2期95-104,共10页
Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(... Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation. 展开更多
关键词 Solar observation adaptive optics Multi-conjugate adaptive optics
下载PDF
Quaternion-Based Adaptive Trajectory Tracking Control of a Rotor-Missile with Unknown Parameters Identification
7
作者 Jie Zhao Zhongjiao Shi +1 位作者 Yuchen Wang Wei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期375-386,共12页
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta... This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations. 展开更多
关键词 Rotor-missile adaptive control Parameter identification Quaternion control
下载PDF
Ada-FFL:Adaptive computing fairness federated learning
8
作者 Yue Cong Jing Qiu +4 位作者 Kun Zhang Zhongyang Fang Chengliang Gao Shen Su Zhihong Tian 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期573-584,共12页
As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improveme... As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improvement of all clients;however,the overall performance improvement often sacrifices the performance of certain clients,such as clients with less data.Ignoring fairness may greatly reduce the willingness of some clients to participate in federated learning.In order to solve the above problem,the authors propose Ada-FFL,an adaptive fairness federated aggregation learning algorithm,which can dynamically adjust the fairness coefficient according to the update of the local models,ensuring the convergence performance of the global model and the fairness between federated learning clients.By integrating coarse-grained and fine-grained equity solutions,the authors evaluate the deviation of local models by considering both global equity and individual equity,then the weight ratio will be dynamically allocated for each client based on the evaluated deviation value,which can ensure that the update differences of local models are fully considered in each round of training.Finally,by combining a regularisation term to limit the local model update to be closer to the global model,the sensitivity of the model to input perturbations can be reduced,and the generalisation ability of the global model can be improved.Through numerous experiments on several federal data sets,the authors show that our method has more advantages in convergence effect and fairness than the existing baselines. 展开更多
关键词 adaptive fariness aggregation FAIRNESS federated learning non-IID
下载PDF
Adaptive admittance tracking control for interactive robot with prescribed performance
9
作者 MENG Qingrui LIN Yan 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期444-450,共7页
An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic perf... An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic performance. Notably, the performance of the output error is confined in an envelope characterized by exponential convergence, leading to convergence to zero. This feature ensures a prompt response from admittance control and establishes a reliable safety framework for interactions. Simulation results provide practical insights,demonstrating the viability of the control scheme proposed in this paper. 展开更多
关键词 prescribed performance admittance control adaptive control ROBOTS
下载PDF
Ground-layer Adaptive Optics for the 2.5 m Wide-field and High-resolution Solar Telescope
10
作者 Ying Yang Lan-Qiang Zhang +5 位作者 Nan-Fei Yan Jin-Sheng Yang Zhen Li Teng-Fei Song Xue-Jun Rao Chang-Hui Rao 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第3期224-236,共13页
The 2.5 m wide-field and high-resolution solar telescope(WeHoST)is currently under developing for solar observations.WeHoST aims to achieve high-resolution observations over a super-wide field of view(FOV)of5′×5... The 2.5 m wide-field and high-resolution solar telescope(WeHoST)is currently under developing for solar observations.WeHoST aims to achieve high-resolution observations over a super-wide field of view(FOV)of5′×5′,and a desired resolution of 0.3″.To meet the scientific requirements of WeHoST,the ground-layer adaptive optics(GLAO)with a specially designed wave front sensing system is as the primary consideration.We introduce the GLAO configuration,particularly the wave front sensing scheme.Utilizing analytic method,we simulate the performance of both classical AO and GLAO systems,optimize the wave front sensing system,and evaluate GLAO performance in terms of PSF uniformity and correction improvement across whole FOV.The results indicate that,the classical AO will achieve diffraction-limited resolution;the suggested GLAO configuration will uniformly improve the seeing across the full 5′×5′FOV,reducing the FWHM across the axis FOV to less than0.3″(λ≥705 nm,r0≥11 cm),which is more than two times improvement.The specially designed wave front sensor schedule offers new potential for WeHoST’s GLAO,particularly the multi-FOV GLAO and the flexibility to select the detected area.These capabilities will significantly enhance the scientific output of the telescope. 展开更多
关键词 INSTRUMENTATION adaptive optics-instrumentation detectors-instrumentation high angular resolution-methods numerical-telescopes-Sun activity
下载PDF
Comparison of Adaptive Simulation Observation Experiments of the Heavy Rainfall in South China and Sichuan Basin
11
作者 Linbin HE Weiyi PENG +5 位作者 Yu ZHANG Shiguang MIAO Siqi CHEN Jiajing LI Duanzhou SHAO Xutao ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2173-2191,共19页
This study examines the effectiveness of adaptive observation experiments using the ensemble transformation sensitivity(ETS) method to improve precipitation forecasts during heavy rainfall events in South China and th... This study examines the effectiveness of adaptive observation experiments using the ensemble transformation sensitivity(ETS) method to improve precipitation forecasts during heavy rainfall events in South China and the Sichuan Basin. High-resolution numerical models are employed to simulate adaptive observations. By identifying the sensitive areas of key weather system positions 42 hours before heavy rainfall events, the adaptive observations improve the prediction of jet streams, strong winds, and shear lines, which are essential for accurate heavy rainfall forecasting. This improvement is reflected in both the precipitation structure and location accuracy within the verification region. In South China, targeted observations enhance rainfall predictions by improving water vapor transport. In the Sichuan Basin, adaptive observations refine water vapor transport and adjust vortex dynamics. This research highlights the importance of accurately predicting shear lines and jet streams for forecasting heavy rainfall in these areas. Overall, this study found that adaptive observation enhances the precipitation forecast skills of the structure and location for heavy rainfall in South China and the Sichuan Basin, emphasizing their potential utility in operational numerical weather prediction. 展开更多
关键词 adaptive observation ensemble transform sensitivity data assimilation rainfall
下载PDF
Fast compressed sensing spectral measurement with adaptive gradient multiscale resolution
12
作者 蓝若明 刘雪峰 +1 位作者 李天平 白成杰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期298-304,共7页
We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement ti... We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements. 展开更多
关键词 SPECTROMETER compressed sensing adaptive gradient multiscale resolution fast measurement
下载PDF
Noise-tolerate and adaptive coefficient zeroing neural network for solving dynamic matrix square root
13
作者 Xiuchun Xiao Chengze Jiang +1 位作者 Qixiang Mei Yudong Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期167-177,共11页
The solving of dynamic matrix square root(DMSR)problems is frequently encountered in many scientific and engineering fields.Although the original zeroing neural network is powerful for solving the DMSR,it cannot vanis... The solving of dynamic matrix square root(DMSR)problems is frequently encountered in many scientific and engineering fields.Although the original zeroing neural network is powerful for solving the DMSR,it cannot vanish the influence of the noise perturbations,and its constant-coefficient design scheme cannot accelerate the convergence speed.Therefore,a noise-tolerate and adaptive coefficient zeroing neural network(NTACZNN)is raised to enhance the robust noise immunity performance and accelerate the conver-gence speed simultaneously.Then,the global convergence and robustness of the pro-posed NTACZNN are theoretically analysed under an ideal environment and noise-perturbed circumstances.Furthermore,some illustrative simulation examples are designed and performed in order to substantiate the efficacy and advantage of the NTACZNN for the DMSR problem solution.Compared with some existing ZNNs,the proposed NTACZNN possesses advanced performance in terms of noise tolerance,solution accuracy,and convergence rate. 展开更多
关键词 adaptive intelligent systems neural network real-time systems
下载PDF
Acetic acid-and furfural-based adaptive evolution of Saccharomyces cerevisiae strains for improving stress tolerance and lignocellulosic ethanol production
14
作者 Omama Rehman Youduo Wu +7 位作者 Quan Zhang Jin Guo Cuihuan Sun Huipeng Gao Yaqing Xu Rui Xu Ayesha Shahid Chuang Xue 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期26-33,共8页
Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyc... Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyces cerevisiae strains.Development of industrial S.cerevisiae strains with high tolerance towards these inhibitors is thus critical for efficient lignocellulosic ethanol production.In this study,the acetic acid or furfural tolerance of different S.cerevisiae strains could be significantly enhanced after adaptive evolution via serial cultivation for 40 generations under stress conditions.The acetic acid-based adaptive strain SPSC01-TA9 produced 30.5 g·L^(-1)ethanol with a yield of 0.46 g·g^(-1)in the presence of 9 g·L^(-1)acetic acid,while the acetic acid/furfural-based adaptive strain SPSC01-TAF94 produced more ethanol of 36.2 g·L^(-1)with increased yield up to 0.49 g·g^(-1)in the presence of both 9 g·L^(-1)acetic acid and 4 g·L^(-1)furfural.Significant improvements were also observed during non-detoxified corn stover hydrolysate culture by SPSC01-TAF94,which achieved ethanol production and yield of 29.1 g·L^(-1)and 0.49 g·g^(-1),respectively,the growth and fermentation efficiency of acetic acid/furfural-based adaptive strain in hydrolysate was 95%higher than those of wildtype strains,indicating the acetic acid-and furfural-based adaptive evolution strategy could be an effective approach for improving lignocellulosic ethanol production.The adapted strains developed in this study with enhanced tolerance against acetic acid and furfural could be potentially contribute to economically feasible and sustainable lignocellulosic biorefinery. 展开更多
关键词 Saccharomyces cerevisiae Lignocellulosic ethanol production adaptive evolution Acetic acid FURFURAL
下载PDF
A Novel Clutter Suppression Algorithm for Low-Slow-Small Targets Detecting Based on Sparse Adaptive Filtering
15
作者 Zeqi Yang Shuai Ma +2 位作者 Ning Liu Kai Chang Xiaode Lyu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期54-64,共11页
Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.I... Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance. 展开更多
关键词 passive radar interference suppression sparse representation adaptive filtering
下载PDF
Reinforcement learning based adaptive control for uncertain mechanical systems with asymptotic tracking
16
作者 Xiang-long Liang Zhi-kai Yao +1 位作者 Yao-wen Ge Jian-yong Yao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期19-28,共10页
This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg... This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach. 展开更多
关键词 adaptive control Reinforcement learning Uncertain mechanical systems Asymptotic tracking
下载PDF
Nonlinear robust adaptive control for bidirectional stabilization system of all-electric tank with unknown actuator backlash compensation and disturbance estimation
17
作者 Shusen Yuan Wenxiang Deng +1 位作者 Jianyong Yao Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期144-158,共15页
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin... Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach. 展开更多
关键词 Bidirectional stabilization system Robust control adaptive control Backlash inverse Disturbance estimation
下载PDF
Adaptive H_(∞)Filtering Algorithm for Train Positioning Based on Prior Combination Constraints
18
作者 Xiuhui Diao Pengfei Wang +2 位作者 Weidong Li Xianwu Chu Yunming Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1795-1812,共18页
To solve the problem of data fusion for prior information such as track information and train status in train positioning,an adaptive H∞filtering algorithm with combination constraint is proposed,which fuses prior in... To solve the problem of data fusion for prior information such as track information and train status in train positioning,an adaptive H∞filtering algorithm with combination constraint is proposed,which fuses prior information with other sensor information in the form of constraints.Firstly,the train precise track constraint method of the train is proposed,and the plane position constraint and train motion state constraints are analysed.A model for combining prior information with constraints is established.Then an adaptive H∞filter with combination constraints is derived based on the adaptive adjustment method of the robustness factor.Finally,the positioning effect of the proposed algorithm is simulated and analysed under the conditions of a straight track and a curved track.The results show that the positioning accuracy of the algorithm with constrained filtering is significantly better than that of the algorithm without constrained filtering and that the algorithm with constrained filtering can achieve better performance when combined with track and condition information,which can significantly reduce the train positioning error.The effectiveness of the proposed algorithm is verified. 展开更多
关键词 Train positioning combination constraint adaptive H_(∞)filter
下载PDF
Value Iteration-Based Cooperative Adaptive Optimal Control for Multi-Player Differential Games With Incomplete Information
19
作者 Yun Zhang Lulu Zhang Yunze Cai 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期690-697,共8页
This paper presents a novel cooperative value iteration(VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the l... This paper presents a novel cooperative value iteration(VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the learning process and adapt their policies sequentially.Our method removes the dependence of admissible initial policies,which is one of the main drawbacks of the PI-based frameworks.Furthermore,this algorithm enables the players to adapt their control policies without full knowledge of others’ system parameters or control laws.The efficacy of our method is illustrated by three examples. 展开更多
关键词 adaptive dynamic programming incomplete information multi-player differential game value iteration
下载PDF
Implementation of Fuzzy Logic Control into an Equivalent Minimization Strategy for Adaptive Energy Management of A Parallel Hybrid Electric Vehicle
20
作者 Jared A. Diethorn Andrew C. Nix +1 位作者 Mario G. Perhinschi W. Scott Wayne 《Journal of Transportation Technologies》 2024年第1期88-118,共31页
As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr... As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC. 展开更多
关键词 Hybrid Electric Vehicle Fuzzy Logic adaptive Control Charge Sustainability
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部