With the popularity of adaptive multi-rate wideband (AMR-WB) audio in mobile communication, many AMR- WB based techniques, such as a similar compression architecture to transmit secret information during the process...With the popularity of adaptive multi-rate wideband (AMR-WB) audio in mobile communication, many AMR- WB based techniques, such as a similar compression architecture to transmit secret information during the process of compression, were proposed to transmit covert messages. However, if a sender does not have the original waveform audio format (WAV) audio, the architecture cannot be used. In this paper, a new covert message method, which takes effect after WAV audio is compressed into AMR-WB speech, is proposed. This method takes advantage of algebraic codebook search. Aiming at improving speed and reducing search space, it does not perform algebraic codebook search using the optimal search algorithm, and it does not reach the positions of non-zero pulses via depth-first tree search that characterizes the energy of audio. According to the features of search methods and the codebook index construction, every track in each subframe is analyzed to find the proper positions for embedding secret information. Experimental results show that the proposed method has satisfactory capacity and simplicity regardless of compression process.展开更多
Steganography based on bits-modification of speech frames is a kind of commonly used method, which targets at RTP payloads and offers covert communications over voice-over-IP(Vo IP). However, direct modification on fr...Steganography based on bits-modification of speech frames is a kind of commonly used method, which targets at RTP payloads and offers covert communications over voice-over-IP(Vo IP). However, direct modification on frames is often independent of the inherent speech features, which may lead to great degradation of speech quality. A novel frame-bitrate-change based steganography is proposed in this work, which discovers a novel covert channel for Vo IP and introduces less distortion. This method exploits the feature of multi-rate speech codecs that the practical bitrate of speech frame is identified only by speech decoder at receiving end. Based on this characteristic, two steganography strategies called bitrate downgrading(BD) and bitrate switching(BS)are provided. The first strategy substitutes high bit-rate speech frames with lower ones to embed secret message, which introduces very low distortion in practice, and much less than other bits-modification based methods with the same embedding capacity. The second one encodes secret message bits into different types of speech frames, which is an alternative choice for supplement. The two strategies are implemented and tested on our covert communication system Steg Vo IP. The experiment results show that our proposed method is effective and fulfills the real-time requirement of Vo IP communication.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (2016JX06)the National Natural Science Foundation of China (61472369)
文摘With the popularity of adaptive multi-rate wideband (AMR-WB) audio in mobile communication, many AMR- WB based techniques, such as a similar compression architecture to transmit secret information during the process of compression, were proposed to transmit covert messages. However, if a sender does not have the original waveform audio format (WAV) audio, the architecture cannot be used. In this paper, a new covert message method, which takes effect after WAV audio is compressed into AMR-WB speech, is proposed. This method takes advantage of algebraic codebook search. Aiming at improving speed and reducing search space, it does not perform algebraic codebook search using the optimal search algorithm, and it does not reach the positions of non-zero pulses via depth-first tree search that characterizes the energy of audio. According to the features of search methods and the codebook index construction, every track in each subframe is analyzed to find the proper positions for embedding secret information. Experimental results show that the proposed method has satisfactory capacity and simplicity regardless of compression process.
基金Project(2011CB302305)supported by National Basic Research Program(973 Program)of ChinaProjects(61232004,61302094)supported by National Natural Science Foundation of China+2 种基金Project(ZQN-PY115)supported by Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,ChinaProject(JA13012)supported by Education Science Research Program for Young and Middle-aged Teacher of Fujian Province of ChinaProject(2014J01238)supported by Natural Science Foundation of Fujian Province of China
文摘Steganography based on bits-modification of speech frames is a kind of commonly used method, which targets at RTP payloads and offers covert communications over voice-over-IP(Vo IP). However, direct modification on frames is often independent of the inherent speech features, which may lead to great degradation of speech quality. A novel frame-bitrate-change based steganography is proposed in this work, which discovers a novel covert channel for Vo IP and introduces less distortion. This method exploits the feature of multi-rate speech codecs that the practical bitrate of speech frame is identified only by speech decoder at receiving end. Based on this characteristic, two steganography strategies called bitrate downgrading(BD) and bitrate switching(BS)are provided. The first strategy substitutes high bit-rate speech frames with lower ones to embed secret message, which introduces very low distortion in practice, and much less than other bits-modification based methods with the same embedding capacity. The second one encodes secret message bits into different types of speech frames, which is an alternative choice for supplement. The two strategies are implemented and tested on our covert communication system Steg Vo IP. The experiment results show that our proposed method is effective and fulfills the real-time requirement of Vo IP communication.