期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于ALIF和TMFDE的滚动轴承故障诊断研究
1
作者 赵家浩 罗娜 梁永文 《制造技术与机床》 北大核心 2023年第7期9-15,共7页
为了提高滚动轴承的故障识别精度,提出了一种基于自适应局部迭代滤波(ALIF)和时移多尺度波动散布熵(TMFDE)的故障诊断方法。首先,利用ALIF对滚动轴承振动信号进行分解,获得一组IMF分量。其次,为了获得更集成的IMF分量,基于能量法评估各... 为了提高滚动轴承的故障识别精度,提出了一种基于自适应局部迭代滤波(ALIF)和时移多尺度波动散布熵(TMFDE)的故障诊断方法。首先,利用ALIF对滚动轴承振动信号进行分解,获得一组IMF分量。其次,为了获得更集成的IMF分量,基于能量法评估各IMF分量的重要性,将前3阶分量视为有效分量。接着,利用TMFDE量化有效分量中的特征信息,构建故障特征向量。最后,将故障特征输入至粒子群优化的极限学习机中进行故障识别。利用东南大学的滚动轴承数据对该方法进行了评估,结果表明该方法能够准确地识别故障的类型,与其他方法相比,该方法在数据量较少时仍然具有优异的稳定性。 展开更多
关键词 自适应局部迭代滤波 时移多尺度波动散布熵 能量法 滚动轴承 故障检测
下载PDF
基于CEEMDAN和层次波动离散熵的滚动轴承声音信号故障检测
2
作者 姚楠 张能 +1 位作者 刘子全 李利荣 《机床与液压》 北大核心 2023年第12期195-203,共9页
声音信号在收集时具有非接触测量的优势,但容易受到周围环境噪声的干扰而导致信噪比较低,不利于特征信息的获取。为从滚动轴承声音数据中提炼出有效的特征信息,并实现故障的精准识别,提出一种基于自适应噪声完全集成经验模态分解(CEEMD... 声音信号在收集时具有非接触测量的优势,但容易受到周围环境噪声的干扰而导致信噪比较低,不利于特征信息的获取。为从滚动轴承声音数据中提炼出有效的特征信息,并实现故障的精准识别,提出一种基于自适应噪声完全集成经验模态分解(CEEMDAN)和层次波动离散熵(HFDE)的声音信号故障诊断策略。在该策略中,CEEMDAN缓解了集成经验模态分解(EEMD)的模态混淆缺陷;针对传统多尺度波动离散熵(MFDE)无法考虑时间序列的高频信息的缺陷,提出一种基于层次化处理的层次波动离散熵非线性动力学指标。将所提策略用于滚动轴承的故障识别,能够检测出不同故障状态下的声音数据。通过数值模拟和滚动轴承实验数据分析,将所提方法与CEEMDAN-MFDE、EEMD-HFDE、EEMD-MFDE、HFDE和MFDE进行对比。结果表明:所提方法达到了100%的识别准确率,多次实验的平均识别准确率也达到了99.5%,均高于对比方法,从而验证了该策略的有效性和优越性。 展开更多
关键词 滚动轴承声音信号 故障检测 自适应噪声完备集成经验模态分解 层次波动离散熵 层次处理
下载PDF
基于CEEMDAN-MFDE-HHO-SVM的机载燃油泵故障辨识
3
作者 刘军龙 俞凯耀 张相春 《机电工程》 CAS 北大核心 2023年第10期1616-1623,共8页
针对机载燃油泵振动信号的有效分量相互耦合、故障特征提取困难,进而导致故障识别准确率低的问题,提出了一种基于自适应噪声完备经验模态分解(CEEMDAN)、多尺度波动散布熵(MFDE)和哈里斯鹰算法(HHO)优化支持向量机(SVM)的机载燃油泵故... 针对机载燃油泵振动信号的有效分量相互耦合、故障特征提取困难,进而导致故障识别准确率低的问题,提出了一种基于自适应噪声完备经验模态分解(CEEMDAN)、多尺度波动散布熵(MFDE)和哈里斯鹰算法(HHO)优化支持向量机(SVM)的机载燃油泵故障辨识方法(CEEMDAN-MFDE-HHO-SVM)。首先,采用CEEMDAN方法对机载燃油泵振动信号进行了自适应分解,生成了一组从低频到高频分布的本征模态函数(IMF),并选择包含冲击信息较多的IMF分量进行了信号重构,得到了噪声含量较低的信号;然后,采用MFDE方法计算了低噪信号的熵值,构造了表征样本故障属性的特征矩阵;最后,采用HHO算法对SVM的关键参数进行了优化,以构造基于HHO-SVM模型的多故障分类器,对机载燃油泵的故障进行了辨识;基于实测机载燃油泵故障数据集,将CEEMDAN-MFDE-HHO-SVM方法与其他组合方法进行了对比分析。研究结果表明:该故障辨识模型的故障分类准确率达到了100%,在信号处理、熵值特征提取和分类器方面都优于其他对比方法;该模型不仅具有更高的分类准确率,而且具有更优异的效率,后续可以将其推广到其他机械设备的故障辨识中。 展开更多
关键词 故障识别准确率 自适应噪声完备经验模态分解 多尺度波动散布熵 哈里斯鹰优化 支持向量机
下载PDF
FDM和RCMDE结合的特征提取与故障诊断 被引量:10
4
作者 左红艳 刘晓波 洪连环 《振动.测试与诊断》 EI CSCD 北大核心 2021年第3期539-546,624,共9页
为提取有效特征向量以实现航空发动动机转子的故障诊断,针对航空发动机转子振动信号的非线性、非平稳的特性,首先,应用傅里叶分解方法(Fourier decomposition method,简称FDM)提取航空发动机转子信号的边际谱重心及最大能量层的谱重心;... 为提取有效特征向量以实现航空发动动机转子的故障诊断,针对航空发动机转子振动信号的非线性、非平稳的特性,首先,应用傅里叶分解方法(Fourier decomposition method,简称FDM)提取航空发动机转子信号的边际谱重心及最大能量层的谱重心;其次,计算振动信号的精细复合多尺度散布熵;最后,应用双阶自适应小波聚类方法对特征空间实现故障分类与识别。应用航空发动机转子试验器采集的样本验证表明,上述方法提取的特征值准确且波动小,同种故障类型的特征值集中,不同故障类型之间差异大,有利于提高多种故障类型混合的诊断精度。 展开更多
关键词 傅里叶分解 精细复合多尺度散布熵 双阶自适应小波聚类 故障诊断
下载PDF
基于CEEMDAN和RCMDE的往复压缩机轴承故障诊断方法 被引量:11
5
作者 王金东 欧凌非 +1 位作者 赵海洋 宋美萍 《机床与液压》 北大核心 2021年第5期168-172,161,共6页
针对往复压缩机振动加速度信号的非线性、非平稳等特性,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和精细复合多尺度散布熵(RCMDE)的往复压缩机轴承故障特征提取方法。采用CEEMDAN方法对信号进行分解时,通过不同的参数组合,... 针对往复压缩机振动加速度信号的非线性、非平稳等特性,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和精细复合多尺度散布熵(RCMDE)的往复压缩机轴承故障特征提取方法。采用CEEMDAN方法对信号进行分解时,通过不同的参数组合,可得到不同的IMF分量;计算不同参数条件下重构后的信号的峭度值,选用峭度值最大的一组参数重新对信号进行CEEMDAN分解,并进行信号重构。对重构后的信号进行RCMDE分析,提取故障特征向量,并利用支持向量机(SVM)进行分类识别。将优选参数的CEEMDAN分解方法和原CEEMDAN分解方法进行对比,结果表明:优选参数的CEEMDAN分解方法能更好地提取往复压缩机周期冲击性信号,有利于提高故障诊断的精确度。 展开更多
关键词 自适应噪声完备集合经验模态分解 精细复合多尺度散布熵 信号重构 往复压缩机 故障诊断
下载PDF
电机滚动轴承故障的会议制随机森林诊断方法 被引量:4
6
作者 张利宏 罗振鹏 《重庆理工大学学报(自然科学)》 北大核心 2021年第9期109-115,共7页
为了提高电机轴承故障的识别准确率,提出了基于自适应多尺度散布熵与会议制随机森林算法的轴承故障诊断方法。分析了电机轴承不同故障信号的特征频率,将局部特征尺度分解和散布熵进行结合,提取了故障信号的自适应多尺度散布熵作为特征... 为了提高电机轴承故障的识别准确率,提出了基于自适应多尺度散布熵与会议制随机森林算法的轴承故障诊断方法。分析了电机轴承不同故障信号的特征频率,将局部特征尺度分解和散布熵进行结合,提取了故障信号的自适应多尺度散布熵作为特征向量。在故障模式诊断方面,以随机森林算法为基础融入了决策树的参会权重策略,使专家型决策树具有更大的决策权,从而提高了随机森林算法的故障诊断准确率,将此算法命名为会议制随机森林算法。以美国凯斯西储大学的轴承数据为对象进行实验,在不同故障模式的诊断实验中,会议制随机森林算法的识别准确率比传统算法高出了6.68个百分点;在不同故障程度的内圈故障诊断实验中,会议制随机森林算法的识别准确率比传统算法高出了6.28个百分点,比马尔可夫诊断方法高出了7.86个百分点,以上数据验证了故障诊断方法的有效性。 展开更多
关键词 电机轴承故障诊断 自适应多尺度散布熵 会议制随机森林 参会权重 专家型决策树
下载PDF
基于VMD散布熵与改进灰狼优化SVDD的轴承半监督故障诊断研究 被引量:20
7
作者 付文龙 谭佳文 王凯 《振动与冲击》 EI CSCD 北大核心 2019年第22期190-197,共8页
为充分挖掘未标记样本所蕴含的有效信息,进而提升诊断精度,研究提出一种基于变分模态分解(VMD)散布熵与改进灰狼优化支持向量数据描述(SVDD)的轴承半监督故障诊断方法。采用中心频率观察法确定VMD分解模态参数K,进而将原始信号分解为一... 为充分挖掘未标记样本所蕴含的有效信息,进而提升诊断精度,研究提出一种基于变分模态分解(VMD)散布熵与改进灰狼优化支持向量数据描述(SVDD)的轴承半监督故障诊断方法。采用中心频率观察法确定VMD分解模态参数K,进而将原始信号分解为一系列本征模态函数并计算各分量的散布熵值,构成测试样本和部分标记的训练样本;再由半监督模糊C均值(SSFCM)聚类对训练样本进行聚类分析,从而对所得聚类簇进行SVDD建模,同时采用k近邻准则进行决策优化,并由所提自适应变异灰狼算法优化SVDD模型参数;将基于最优参数训练的改进决策SVDD模型用于测试样本的故障模式识别。试验分析和对比结果表明,所提方法具有较好的诊断性能。 展开更多
关键词 变分模态分解 散布熵 支持向量数据描述 自适应变异灰狼算法 半监督模糊C均值 故障诊断
下载PDF
基于AVMD-DE和IBSA-KELM的混沌网络流量组合预测 被引量:5
8
作者 陈颖 魏臻 程磊 《计算机应用与软件》 北大核心 2018年第6期117-121,共5页
针对混沌网络流量时间序列预测,提出一种基于自适应变分模态分解AVMD(Adaptive Variational Mode Decomposition)-分散熵DE(Dispersion Entropy)和改进鸟群算法IBSA(Improved Bird Swarm Algorithm)优化核极限学习机KELM(Kernel Extreme... 针对混沌网络流量时间序列预测,提出一种基于自适应变分模态分解AVMD(Adaptive Variational Mode Decomposition)-分散熵DE(Dispersion Entropy)和改进鸟群算法IBSA(Improved Bird Swarm Algorithm)优化核极限学习机KELM(Kernel Extreme Learning Machine)的组合预测模型。利用混沌理论对网络流量样本数据进行分析,采用AVMD-DE方法对网络流量序列分解重构,降低非线性、非平稳时间序列的预测误差及计算规模;采用IBSA-KELM模型分别对重构的子序列进行预测;将预测值进行合成。通过仿真实验分析及与其他预测方法的对比实验,证明AVMD-DE和IBSA-KELM组合预测模型可以显著提高网络流量预测的准确度。 展开更多
关键词 网络流量 自适应变分模态分解 分散熵 鸟群算法 核极限学习机
下载PDF
A comparative study of four nonlinear dynamic methods and their applications in classification of ship-radiated noise
9
作者 Yu-xing Li Shang-bin Jiao +2 位作者 Bo Geng Qing Zhang You-min Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期183-193,共11页
Refined composite multi-scale dispersion entropy(RCMDE),as a new and effective nonlinear dynamic method,has been applied in the field of medical diagnosis and fault diagnosis.In this paper,we first introduce RCMDE int... Refined composite multi-scale dispersion entropy(RCMDE),as a new and effective nonlinear dynamic method,has been applied in the field of medical diagnosis and fault diagnosis.In this paper,we first introduce RCMDE into the field of underwater acoustic signal processing for complexity feature extraction of ship radiated noise,and then propose a novel classification method for ship-radiated noise based on RCMDE and k-nearest neighbor(KNN),termed RCMDE-KNN.The results of a comparative experiment show that the proposed RCMDE-KNN classification method can effectively extract the complexity features of ship-radiated noise,and has better classification performance under one and two scales than the other three classification methods based on multi-scale permutation entropy(MPE)and KNN,multi-scale weighted-permutation entropy(MW-PE)and KNN,and multi-scale dispersion entropy(MDE)and KNN,termed MPE-KNN,MW-PE-KNN,and MDE-KNN.It is proved that the RCMDE-KNN classification method for ship-radiated noise is feasible and effective,and can obtain a very high recognition rate. 展开更多
关键词 Nonlinear dynamic Refined composite multi-scale dispersion entropy(RCMDE) multi-scale dispersion entropy(MDE) multi-scale weighted-permutation entropy (MW-PE) multi-scale permutation entropy(MPE) Classification of ship-radiated noise
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部