The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ...The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.展开更多
Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded an...Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded and blurred targets between long-range complex scene frames.More so,its fixed weight fusion strategy does not use the complementary properties of deep and shallow features.In this paper,we propose a new target tracking method,namely ECO++,using deep feature adaptive fusion in a complex scene,in the following two aspects:First,we constructed a new temporal convolution mode and used it to replace the underlying convolution layer in Conformer network to obtain an improved Conformer network.Second,we adaptively fuse the deep features,which output through the improved Conformer network,by combining the Peak to Sidelobe Ratio(PSR),frame smoothness scores and adaptive adjustment weight.Extensive experiments on the OTB-2013,OTB-2015,UAV123,and VOT2019 benchmarks demonstrate that the proposed approach outperforms the state-of-the-art algorithms in tracking accuracy and robustness in complex scenes with occluded,blurred,and fast-moving targets.展开更多
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical ...Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes.展开更多
In order to solve the problems of color bias and visual deviation caused by inaccurate estimation of transmittance and atmospheric light in image defogging,a new algorithm based on multi-scale morphological reconstruc...In order to solve the problems of color bias and visual deviation caused by inaccurate estimation of transmittance and atmospheric light in image defogging,a new algorithm based on multi-scale morphological reconstruction with adaptive transmittance and atmospheric light correction was proposed.Firstly,the algorithm used the open operation under morphological reconstruction to replace the minimum filter operation in the dark channel,and used the morphological edge to set the scale of the open operation structure elements,and constructed a multi-scale open operation fusion dark channel.After morphological noise reduction,the exact initial transmittance was obtained.According to the relationship between brightness and saturation difference and transmittance,an adaptive transmittance correction model was fitted with Gaussian function to correct the initial transmittance of the sky fog map.Then the local atmospheric light was improved according to the image brightness information and morphology closure operation.Finally,the proposed algorithm was combined with the atmospheric scattering model to obtain an accurate fog free image.The experimental results showed that the proposed algorithm was suitable for fog image restoration under various scenes,the restoration effect was good,and the brightness was suitable.展开更多
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu...Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhanc...Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods.展开更多
Accurate multi-source fusion is based on the reliability, quantity, and fusion mode of the sources. The problem of selecting the optimal set for participating in the fusion process is nondeterministic-polynomial-time-...Accurate multi-source fusion is based on the reliability, quantity, and fusion mode of the sources. The problem of selecting the optimal set for participating in the fusion process is nondeterministic-polynomial-time-hard and is neither sub-modular nor super-modular. Furthermore, in the case of the Kalman filter(KF) fusion algorithm, accurate statistical characteristics of noise are difficult to obtain, and this leads to an unsatisfactory fusion result. To settle the referred cases, a distributed and adaptive weighted fusion algorithm based on KF has been proposed in this paper. In this method, on the basis of the pseudo prior probability of the estimated state of each source, the reliability of the sources is evaluated and the optimal set is selected on a certain threshold. Experiments were performed on multi-source pedestrian dead reckoning for verifying the proposed algorithm. The results obtained from these experiments indicate that the optimal set can be selected accurately with minimal computation, and the fusion error is reduced by 16.6% as compared to the corresponding value resulting from the algorithm without improvements.The proposed adaptive source reliability and fusion weight evaluation is effective against the varied-noise multi-source fusion system, and the fusion error caused by inaccurate statistical characteristics of the noise is reduced by the adaptive weight evaluation.The proposed algorithm exhibits good robustness, adaptability,and value on applications.展开更多
The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients ar...The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.展开更多
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate r...In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms.展开更多
The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assem...The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assembly errors,and other imperfections that may arise during the design or manufacturing phases.Conse-quently,these micro-motors might generate anomalous noises during their operation,consequently exerting a substantial adverse influence on the overall comfort of drivers and passengers.Automobile micro-motors exhibit a diverse array of structural variations,consequently leading to the manifestation of a multitude of distinctive auditory irregularities.To address the identification of diverse forms of abnormal noise,this research presents a novel approach rooted in the utilization of vibro-acoustic fusion-convolutional neural network(VAF-CNN).This method entails the deployment of distinct network branches,each serving to capture disparate features from the multi-sensor data,all the while considering the auditory perception traits inherent in the human auditory sys-tem.The intermediary layer integrates the concept of adaptive weighting of multi-sensor features,thus affording a calibration mechanism for the features hailing from multiple sensors,thereby enabling a further refinement of features within the branch network.For optimal model efficacy,a feature fusion mechanism is implemented in the concluding layer.To substantiate the efficacy of the proposed approach,this paper initially employs an augmented data methodology inspired by modified SpecAugment,applied to the dataset of abnormal noise sam-ples,encompassing scenarios both with and without in-vehicle interior noise.This serves to mitigate the issue of limited sample availability.Subsequent comparative evaluations are executed,contrasting the performance of the model founded upon single-sensor data against other feature fusion models reliant on multi-sensor data.The experimental results substantiate that the suggested methodology yields heightened recognition accuracy and greater resilience against interference.Moreover,it holds notable practical significance in the engineering domain,as it furnishes valuable support for the targeted management of noise emanating from vehicle micro-motors.展开更多
The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo images.It has been a good practice to fuse th...The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo images.It has been a good practice to fuse these DSMs generated from various stereo pairs to achieve enhanced,in which multiple DSMs are combined through computational approaches into a single,more accurate,and complete DSM.However,accurately characterizing detailed objects and their boundaries still present a challenge since most boundary-ware fusion methods still struggle to achieve sharpened depth discontinuities due to the averaging effects of different DSMs.Therefore,we propose a simple and efficient adaptive image-guided DSM fusion method that applies k-means clustering on small patches of the orthophoto to guide the pixel-level fusion adapted to the most consistent and relevant elevation points.The experiment results show that our proposed method has outperformed comparing methods in accuracy and the ability to preserve sharpened depth edges.展开更多
This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dy...This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dynamic uncertainties. Multi-rate sensors are employed to observe the system states which cannot be directly obtained by encoders due to the existence of joint flexibilities. By using an extended Kalman filter (EKF), the finite-time synergetic controller is designed based on a sensor fusion estimator which estimates states and parameters of the mechanical system with multi-rate measurements. The proposed controller can guarantee the finite-time convergence of tracking errors by the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach.展开更多
On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative s...On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions.展开更多
Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image ...Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image contour and detail information by traditional image fusion methods,a new multimodal medical image fusion method is proposed.This method first uses non-subsampled shearlet transform to decompose the source image to obtain high and low frequency subband coefficients,then uses the latent low rank representation algorithm to fuse the low frequency subband coefficients,and applies the improved PAPCNN algorithm to fuse the high frequency subband coefficients.Finally,based on the automatic setting of parameters,the optimization method configuration of the time decay factorαe is carried out.The experimental results show that the proposed method solves the problems of difficult parameter setting and insufficient detail protection ability in traditional PCNN algorithm fusion images,and at the same time,it has achieved great improvement in visual quality and objective evaluation indicators.展开更多
In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is pro...In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels.展开更多
An adaptive outlier controlling multirate model based on Hong’s multirate kinetic model was represented in order to resist the outliers and utilize their useful information. Wavelet transform was introduced to detect...An adaptive outlier controlling multirate model based on Hong’s multirate kinetic model was represented in order to resist the outliers and utilize their useful information. Wavelet transform was introduced to detect and control the outliers. The multirate information extraction and the controlling of outliers were properly integrated to establish an adaptive outlier controlling multirate model. The proposed model was applied to multisensor state fusion with interacting multiple model (IMM), and a robust interacting multisensor state fusion algorithm was established based on adaptive outlier controlling multirate model. The Monte-Carlo simulation shows that it could improve the accuracy of fusion estimation by 70% compared to Hong’s algorithm and at least 14% to Xiao’s algorithm.展开更多
In recent visual tracking research,correlation filter(CF)based trackers become popular because of their high speed and considerable accuracy.Previous methods mainly work on the extension of features and the solution o...In recent visual tracking research,correlation filter(CF)based trackers become popular because of their high speed and considerable accuracy.Previous methods mainly work on the extension of features and the solution of the boundary effect to learn a better correlation filter.However,the related studies are insufficient.By exploring the potential of trackers in these two aspects,a novel adaptive padding correlation filter(APCF)with feature group fusion is proposed for robust visual tracking in this paper based on the popular context-aware tracking framework.In the tracker,three feature groups are fused by use of the weighted sum of the normalized response maps,to alleviate the risk of drift caused by the extreme change of single feature.Moreover,to improve the adaptive ability of padding for the filter training of different object shapes,the best padding is selected from the preset pool according to tracking precision over the whole video,where tracking precision is predicted according to the prediction model trained by use of the sequence features of the first several frames.The sequence features include three traditional features and eight newly constructed features.Extensive experiments demonstrate that the proposed tracker is superior to most state-of-the-art correlation filter based trackers and has a stable improvement compared to the basic trackers.展开更多
Due to the lack of long-range association and spatial location information,fine details and accurate boundaries of complex clothing images cannot always be obtained by using the existing deep learning-based methods.Th...Due to the lack of long-range association and spatial location information,fine details and accurate boundaries of complex clothing images cannot always be obtained by using the existing deep learning-based methods.This paper presents a convolutional structure with multi-scale fusion to optimize the step of clothing feature extraction and a self-attention module to capture long-range association information.The structure enables the self-attention mechanism to directly participate in the process of information exchange through the down-scaling projection operation of the multi-scale framework.In addition,the improved self-attention module introduces the extraction of 2-dimensional relative position information to make up for its lack of ability to extract spatial position features from clothing images.The experimental results based on the colorful fashion parsing dataset(CFPD)show that the proposed network structure achieves 53.68%mean intersection over union(mIoU)and has better performance on the clothing parsing task.展开更多
基金the National Key R&D Program of China(2018AAA0103103).
文摘The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.
基金supported by the National Key R&D Plan"Intelligent Robots"Key Project of P.R.China(Grant No.2018YFB1308602)the National Natural Science Foundation of P.R.China(Grant No.61173184)+3 种基金the Chongqing Natural Science Foundation of P.R.China(Grant No.cstc2018jcyj AX0694)Research Project of Chongqing Big Data Application and Development Administration Bureau(No.22-30)Basic and Advanced Research Projects of CSTC(No.cstc2019jcyj-zdxmX0008)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K201900605)。
文摘Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded and blurred targets between long-range complex scene frames.More so,its fixed weight fusion strategy does not use the complementary properties of deep and shallow features.In this paper,we propose a new target tracking method,namely ECO++,using deep feature adaptive fusion in a complex scene,in the following two aspects:First,we constructed a new temporal convolution mode and used it to replace the underlying convolution layer in Conformer network to obtain an improved Conformer network.Second,we adaptively fuse the deep features,which output through the improved Conformer network,by combining the Peak to Sidelobe Ratio(PSR),frame smoothness scores and adaptive adjustment weight.Extensive experiments on the OTB-2013,OTB-2015,UAV123,and VOT2019 benchmarks demonstrate that the proposed approach outperforms the state-of-the-art algorithms in tracking accuracy and robustness in complex scenes with occluded,blurred,and fast-moving targets.
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
基金funded by the National Natural Science Foundation of China,grant number 61302188.
文摘Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes.
基金supported by National Natural Science Foundation of China(No.61561030)College Industry Support Plan Project of Gansu Provincial Department of Education(No.2021CYZC-04)Educational Reform Fund of Lanzhou Jiaotong University(No.JG201928)。
文摘In order to solve the problems of color bias and visual deviation caused by inaccurate estimation of transmittance and atmospheric light in image defogging,a new algorithm based on multi-scale morphological reconstruction with adaptive transmittance and atmospheric light correction was proposed.Firstly,the algorithm used the open operation under morphological reconstruction to replace the minimum filter operation in the dark channel,and used the morphological edge to set the scale of the open operation structure elements,and constructed a multi-scale open operation fusion dark channel.After morphological noise reduction,the exact initial transmittance was obtained.According to the relationship between brightness and saturation difference and transmittance,an adaptive transmittance correction model was fitted with Gaussian function to correct the initial transmittance of the sky fog map.Then the local atmospheric light was improved according to the image brightness information and morphology closure operation.Finally,the proposed algorithm was combined with the atmospheric scattering model to obtain an accurate fog free image.The experimental results showed that the proposed algorithm was suitable for fog image restoration under various scenes,the restoration effect was good,and the brightness was suitable.
基金This study was supported by National Key Research and Development Project(Project No.2017YFD0301506)National Social Science Foundation(Project No.71774052)+1 种基金Hunan Education Department Scientific Research Project(Project No.17K04417A092).
文摘Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
基金supported by the China Postdoctoral Science Foundation Funded Project(No.2021M690385)the National Natural Science Foundation of China(No.62101045).
文摘Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods.
文摘Accurate multi-source fusion is based on the reliability, quantity, and fusion mode of the sources. The problem of selecting the optimal set for participating in the fusion process is nondeterministic-polynomial-time-hard and is neither sub-modular nor super-modular. Furthermore, in the case of the Kalman filter(KF) fusion algorithm, accurate statistical characteristics of noise are difficult to obtain, and this leads to an unsatisfactory fusion result. To settle the referred cases, a distributed and adaptive weighted fusion algorithm based on KF has been proposed in this paper. In this method, on the basis of the pseudo prior probability of the estimated state of each source, the reliability of the sources is evaluated and the optimal set is selected on a certain threshold. Experiments were performed on multi-source pedestrian dead reckoning for verifying the proposed algorithm. The results obtained from these experiments indicate that the optimal set can be selected accurately with minimal computation, and the fusion error is reduced by 16.6% as compared to the corresponding value resulting from the algorithm without improvements.The proposed adaptive source reliability and fusion weight evaluation is effective against the varied-noise multi-source fusion system, and the fusion error caused by inaccurate statistical characteristics of the noise is reduced by the adaptive weight evaluation.The proposed algorithm exhibits good robustness, adaptability,and value on applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61402368)Aerospace Support Fund,China(Grant No.2017-HT-XGD)Aerospace Science and Technology Innovation Foundation,China(Grant No.2017 ZD 53047)
文摘The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.
基金Supported by the National Natural Science Foundation of China (50979017, NSFC60775060) the National High Technology Ship Research Project of China (GJCB09001)
文摘In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms.
基金The author received the funding from Sichuan Natural Science Foundation(2022NSFSC1892).
文摘The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assembly errors,and other imperfections that may arise during the design or manufacturing phases.Conse-quently,these micro-motors might generate anomalous noises during their operation,consequently exerting a substantial adverse influence on the overall comfort of drivers and passengers.Automobile micro-motors exhibit a diverse array of structural variations,consequently leading to the manifestation of a multitude of distinctive auditory irregularities.To address the identification of diverse forms of abnormal noise,this research presents a novel approach rooted in the utilization of vibro-acoustic fusion-convolutional neural network(VAF-CNN).This method entails the deployment of distinct network branches,each serving to capture disparate features from the multi-sensor data,all the while considering the auditory perception traits inherent in the human auditory sys-tem.The intermediary layer integrates the concept of adaptive weighting of multi-sensor features,thus affording a calibration mechanism for the features hailing from multiple sensors,thereby enabling a further refinement of features within the branch network.For optimal model efficacy,a feature fusion mechanism is implemented in the concluding layer.To substantiate the efficacy of the proposed approach,this paper initially employs an augmented data methodology inspired by modified SpecAugment,applied to the dataset of abnormal noise sam-ples,encompassing scenarios both with and without in-vehicle interior noise.This serves to mitigate the issue of limited sample availability.Subsequent comparative evaluations are executed,contrasting the performance of the model founded upon single-sensor data against other feature fusion models reliant on multi-sensor data.The experimental results substantiate that the suggested methodology yields heightened recognition accuracy and greater resilience against interference.Moreover,it holds notable practical significance in the engineering domain,as it furnishes valuable support for the targeted management of noise emanating from vehicle micro-motors.
基金John Hopkins University Applied Physics Lab to support the Imagery of the 2019 DFC datasets
文摘The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo images.It has been a good practice to fuse these DSMs generated from various stereo pairs to achieve enhanced,in which multiple DSMs are combined through computational approaches into a single,more accurate,and complete DSM.However,accurately characterizing detailed objects and their boundaries still present a challenge since most boundary-ware fusion methods still struggle to achieve sharpened depth discontinuities due to the averaging effects of different DSMs.Therefore,we propose a simple and efficient adaptive image-guided DSM fusion method that applies k-means clustering on small patches of the orthophoto to guide the pixel-level fusion adapted to the most consistent and relevant elevation points.The experiment results show that our proposed method has outperformed comparing methods in accuracy and the ability to preserve sharpened depth edges.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61273150 and 60974046)the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20121101110029)
文摘This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dynamic uncertainties. Multi-rate sensors are employed to observe the system states which cannot be directly obtained by encoders due to the existence of joint flexibilities. By using an extended Kalman filter (EKF), the finite-time synergetic controller is designed based on a sensor fusion estimator which estimates states and parameters of the mechanical system with multi-rate measurements. The proposed controller can guarantee the finite-time convergence of tracking errors by the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61973153)
文摘On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions.
文摘Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image contour and detail information by traditional image fusion methods,a new multimodal medical image fusion method is proposed.This method first uses non-subsampled shearlet transform to decompose the source image to obtain high and low frequency subband coefficients,then uses the latent low rank representation algorithm to fuse the low frequency subband coefficients,and applies the improved PAPCNN algorithm to fuse the high frequency subband coefficients.Finally,based on the automatic setting of parameters,the optimization method configuration of the time decay factorαe is carried out.The experimental results show that the proposed method solves the problems of difficult parameter setting and insufficient detail protection ability in traditional PCNN algorithm fusion images,and at the same time,it has achieved great improvement in visual quality and objective evaluation indicators.
基金National Youth Natural Science Foundation of China(No.61806006)Innovation Program for Graduate of Jiangsu Province(No.KYLX160-781)Jiangsu University Superior Discipline Construction Project。
文摘In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels.
基金The National Natural Science Foundation ofChina (No60304007)The China Aviation Science Foundation (No 03F57003 )The QMX Project of Shanghai Science and Technology Development Foundation ( No04QMX1410)
文摘An adaptive outlier controlling multirate model based on Hong’s multirate kinetic model was represented in order to resist the outliers and utilize their useful information. Wavelet transform was introduced to detect and control the outliers. The multirate information extraction and the controlling of outliers were properly integrated to establish an adaptive outlier controlling multirate model. The proposed model was applied to multisensor state fusion with interacting multiple model (IMM), and a robust interacting multisensor state fusion algorithm was established based on adaptive outlier controlling multirate model. The Monte-Carlo simulation shows that it could improve the accuracy of fusion estimation by 70% compared to Hong’s algorithm and at least 14% to Xiao’s algorithm.
基金supported by the National KeyResearch and Development Program of China(2018AAA0103203)the National Natural Science Foundation of China(62073036,62076031)the Beijing Natural Science Foundation(4202071)。
文摘In recent visual tracking research,correlation filter(CF)based trackers become popular because of their high speed and considerable accuracy.Previous methods mainly work on the extension of features and the solution of the boundary effect to learn a better correlation filter.However,the related studies are insufficient.By exploring the potential of trackers in these two aspects,a novel adaptive padding correlation filter(APCF)with feature group fusion is proposed for robust visual tracking in this paper based on the popular context-aware tracking framework.In the tracker,three feature groups are fused by use of the weighted sum of the normalized response maps,to alleviate the risk of drift caused by the extreme change of single feature.Moreover,to improve the adaptive ability of padding for the filter training of different object shapes,the best padding is selected from the preset pool according to tracking precision over the whole video,where tracking precision is predicted according to the prediction model trained by use of the sequence features of the first several frames.The sequence features include three traditional features and eight newly constructed features.Extensive experiments demonstrate that the proposed tracker is superior to most state-of-the-art correlation filter based trackers and has a stable improvement compared to the basic trackers.
文摘Due to the lack of long-range association and spatial location information,fine details and accurate boundaries of complex clothing images cannot always be obtained by using the existing deep learning-based methods.This paper presents a convolutional structure with multi-scale fusion to optimize the step of clothing feature extraction and a self-attention module to capture long-range association information.The structure enables the self-attention mechanism to directly participate in the process of information exchange through the down-scaling projection operation of the multi-scale framework.In addition,the improved self-attention module introduces the extraction of 2-dimensional relative position information to make up for its lack of ability to extract spatial position features from clothing images.The experimental results based on the colorful fashion parsing dataset(CFPD)show that the proposed network structure achieves 53.68%mean intersection over union(mIoU)and has better performance on the clothing parsing task.