A super-repressed mutant of purR (purRs), which encodes a repressor protein controlling expression of purine biosynthetic genes in Salmonella typhimurium, grew very slowly on NCE medium with 10 μg/mL Ade and lactose ...A super-repressed mutant of purR (purRs), which encodes a repressor protein controlling expression of purine biosynthetic genes in Salmonella typhimurium, grew very slowly on NCE medium with 10 μg/mL Ade and lactose as sole carbon source (cannot form colonies). However, a phenomenon of late-arising mutations was observed when purRs mutants were spread on NCE+lactose plates and subjected to a prolonged non-lethal selection. The reconstruction experiments of revertants showed that the late-arising 'lac+' mutants are not slow growing mutants. Statistical analysis indicated that the distribution of late-arising mutants is Poisson distribution, showing that reversion occurred after plating. The result of co-transductional analysis preliminarily showed that late-arising mutation occurred at selected gene purR or 16 bp PUR box, cis element of structural gene purD. The above results suggest that the phenomenon of late-arising mutation observed by our system is a result of adaptive mutations which are different from random mutations. This is the first time to extend target genes at which adaptive mutations could occur from structural genes involved in carbon metabolism and amino acid biosynthesis to trans regulatory gene coding represser protein. Our results have provided not only a new proof for generality of adaptive mutations but also a new system for study on adaptive mutations.展开更多
A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent ...A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent deep excavations in soft ground.The novelty is that the modified SSA proposes adaptive adjustment strategy to create a balance between the capacity of exploitation and exploration.In AM-SSA,firstly,the population is initialized by cat mapping chaotic sequences to improve the ergodicity and randomness of the individual sparrow,enhancing the global search ability.Then the individuals are adjusted by Tent chaotic disturbance and Cauchy mutation to avoid the population being too concentrated or scattered,expanding the local search ability.Finally,the adaptive producer-scrounger number adjustment formula is introduced to balance the ability to seek the global and local optimal.In addition,it leads to the improved algorithm achieving a better accuracy level and convergence speed compared with the original SSA.To demonstrate the effectiveness and reliability of AM-SSA,23 classical benchmark functions and 25 IEEE Congress on Evolutionary Computation benchmark test functions(CEC2005),are employed as the numerical examples and investigated in comparison with some wellknown optimization algorithms.The statistical results indicate the promising performance of AM-SSA in a variety of optimization with constrained and unknown search spaces.By utilizing the AdaBoost algorithm,multiple sets of weak AMSSA-Elman predictor functions are restructured into one strong predictor by successive iterations for the tunnel deformation prediction output.Additionally,the on-site monitoring data acquired from a deep excavation project in Ningbo,China,were selected as the training and testing sample.Meanwhile,the predictive outcomes are compared with those of other different optimization and machine learning techniques.In the end,the obtained results in this real-world geotechnical engineering field reveal the feasibility of the proposed hybrid algorithm model,illustrating its power and superiority in terms of computational efficiency,accuracy,stability,and robustness.More critically,by observing data in real time on daily basis,the structural safety associated with metro tunnels could be supervised,which enables decision-makers to take concrete control and protection measures.展开更多
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its...An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training.展开更多
The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into loca...The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into local optimum, which is called premature conver- gence. In this paper, we propose a new genetic algorithm with improved arithmetic crossover operation based on gradient method. This crossover operation can generate offspring along quasi-gradient direction which is the Steepest descent direction of the value of objective function. The selection operator is also simplified, every individual in the population is given an opportunity to get evolution to avoid complicated selection algorithm. The adaptive mutation operator and the elitist strategy are also applied in this algorithm. The case 4 indicates this algorithm can faster converge to the global optimum and is more stable than the conventional genetic algorithms.展开更多
Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of...Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery.展开更多
Real-coded genetic algorithm(RGA)usually meets the demand of consecutive space problem.However,compared with simple genetic algorithm(SGA)RGA also has the inherent disadvantages such as prematurity and slow conver...Real-coded genetic algorithm(RGA)usually meets the demand of consecutive space problem.However,compared with simple genetic algorithm(SGA)RGA also has the inherent disadvantages such as prematurity and slow convergence when the solution is close to the optimum solution.This paper presents an improved real-coded genetic algorithm to increase the computation efficiency and avoid prematurity,especially in the optimization of multi-modal function.In this method,mutation operation and crossover operation are improved.Examples are given to demonstrate its com p utation efficiency and robustness.展开更多
Job-shop scheduling problem (JSP) is a typical NP-hard combinatorial optimization problem and has a broad background for engineering application. Nowadays, the effective approach for JSP is a hot topic in related re...Job-shop scheduling problem (JSP) is a typical NP-hard combinatorial optimization problem and has a broad background for engineering application. Nowadays, the effective approach for JSP is a hot topic in related research area of manufacturing system. However, some JSPs, even for moderate size instances, are very difficult to find an optimal solution within a reasonable time because of the process constraints and the complex large solution space. In this paper, an adaptive multi-population genetic algorithm (AMGA) has been proposed to solve this prob- lem. Firstly, using multi-populations and adaptive cross- over probability can enlarge search scope and improve search performance. Secondly, using adaptive mutation probability and elite replacing mechanism can accelerate convergence speed. The approach is tested for some clas- sical benchmark JSPs taken from the literature and com- pared with some other approaches. The computational results show that the proposed AMGA can produce optimal or near-optimal values on almost all tested benchmark instances. Therefore, we can believe that AMGA can be considered as an effective method for solving JSP.展开更多
A new adaptive mutation particle swarm optimizer,which is based on the variance of the population's fitness,is presented in this paper.During the running time,the mutation probability for the current best particle...A new adaptive mutation particle swarm optimizer,which is based on the variance of the population's fitness,is presented in this paper.During the running time,the mutation probability for the current best particle is determined by two factors:the variance of the population's fitness and the current optimal solution.The ability of particle swarm optimization(PSO)algorithm to break away from the local optimum is greatly improved by the mutation.The experimental results show that the new algorithm not only has great advantage of convergence property over genetic algorithm and PSO,but can also avoid the premature convergence problem effectively.展开更多
Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization ...Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization in CR, while general GA always fall into premature convergence. Thereafter, this paper proposed a linear scale transformation to the fitness of individual chromosome, which can reduce the impact of extraordinary individuals exiting in the early evolution iterations, and ensure competition between individuals in the latter evolution iterations. This paper also introduces an adaptive crossover and mutation probability algorithm into parameter adjustment, which can ensure the diversity and convergence of the population. Two applications are applied in the parameter adjustment of CR, one application prefers the bit error rate and another prefers the bandwidth. Simulation results show that the improved parameter adjustment algorithm can converge to the global optimal solution fast without falling into premature convergence.展开更多
基金the National Natural Science Foundation of China (Grant No. 39970008) and Director Foundation of Institute of Microbiology, Chinese Academy of Sciences.
文摘A super-repressed mutant of purR (purRs), which encodes a repressor protein controlling expression of purine biosynthetic genes in Salmonella typhimurium, grew very slowly on NCE medium with 10 μg/mL Ade and lactose as sole carbon source (cannot form colonies). However, a phenomenon of late-arising mutations was observed when purRs mutants were spread on NCE+lactose plates and subjected to a prolonged non-lethal selection. The reconstruction experiments of revertants showed that the late-arising 'lac+' mutants are not slow growing mutants. Statistical analysis indicated that the distribution of late-arising mutants is Poisson distribution, showing that reversion occurred after plating. The result of co-transductional analysis preliminarily showed that late-arising mutation occurred at selected gene purR or 16 bp PUR box, cis element of structural gene purD. The above results suggest that the phenomenon of late-arising mutation observed by our system is a result of adaptive mutations which are different from random mutations. This is the first time to extend target genes at which adaptive mutations could occur from structural genes involved in carbon metabolism and amino acid biosynthesis to trans regulatory gene coding represser protein. Our results have provided not only a new proof for generality of adaptive mutations but also a new system for study on adaptive mutations.
基金supported by the National Natural Science Foundation of China(Grant No.52125803).
文摘A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent deep excavations in soft ground.The novelty is that the modified SSA proposes adaptive adjustment strategy to create a balance between the capacity of exploitation and exploration.In AM-SSA,firstly,the population is initialized by cat mapping chaotic sequences to improve the ergodicity and randomness of the individual sparrow,enhancing the global search ability.Then the individuals are adjusted by Tent chaotic disturbance and Cauchy mutation to avoid the population being too concentrated or scattered,expanding the local search ability.Finally,the adaptive producer-scrounger number adjustment formula is introduced to balance the ability to seek the global and local optimal.In addition,it leads to the improved algorithm achieving a better accuracy level and convergence speed compared with the original SSA.To demonstrate the effectiveness and reliability of AM-SSA,23 classical benchmark functions and 25 IEEE Congress on Evolutionary Computation benchmark test functions(CEC2005),are employed as the numerical examples and investigated in comparison with some wellknown optimization algorithms.The statistical results indicate the promising performance of AM-SSA in a variety of optimization with constrained and unknown search spaces.By utilizing the AdaBoost algorithm,multiple sets of weak AMSSA-Elman predictor functions are restructured into one strong predictor by successive iterations for the tunnel deformation prediction output.Additionally,the on-site monitoring data acquired from a deep excavation project in Ningbo,China,were selected as the training and testing sample.Meanwhile,the predictive outcomes are compared with those of other different optimization and machine learning techniques.In the end,the obtained results in this real-world geotechnical engineering field reveal the feasibility of the proposed hybrid algorithm model,illustrating its power and superiority in terms of computational efficiency,accuracy,stability,and robustness.More critically,by observing data in real time on daily basis,the structural safety associated with metro tunnels could be supervised,which enables decision-makers to take concrete control and protection measures.
基金supported by the National Natural Science Foundation of China (60873086)the Aeronautical Science Foundation of China(20085153013)the Fundamental Research Found of Northwestern Polytechnical Unirersity (JC200942)
文摘An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training.
文摘The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into local optimum, which is called premature conver- gence. In this paper, we propose a new genetic algorithm with improved arithmetic crossover operation based on gradient method. This crossover operation can generate offspring along quasi-gradient direction which is the Steepest descent direction of the value of objective function. The selection operator is also simplified, every individual in the population is given an opportunity to get evolution to avoid complicated selection algorithm. The adaptive mutation operator and the elitist strategy are also applied in this algorithm. The case 4 indicates this algorithm can faster converge to the global optimum and is more stable than the conventional genetic algorithms.
基金National Natural Science Foundation of China(No.519667013)Institution of Higher Learning Scientific Research Project of Gansu Province of China(No.2016B-032)。
文摘Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery.
文摘Real-coded genetic algorithm(RGA)usually meets the demand of consecutive space problem.However,compared with simple genetic algorithm(SGA)RGA also has the inherent disadvantages such as prematurity and slow convergence when the solution is close to the optimum solution.This paper presents an improved real-coded genetic algorithm to increase the computation efficiency and avoid prematurity,especially in the optimization of multi-modal function.In this method,mutation operation and crossover operation are improved.Examples are given to demonstrate its com p utation efficiency and robustness.
文摘Job-shop scheduling problem (JSP) is a typical NP-hard combinatorial optimization problem and has a broad background for engineering application. Nowadays, the effective approach for JSP is a hot topic in related research area of manufacturing system. However, some JSPs, even for moderate size instances, are very difficult to find an optimal solution within a reasonable time because of the process constraints and the complex large solution space. In this paper, an adaptive multi-population genetic algorithm (AMGA) has been proposed to solve this prob- lem. Firstly, using multi-populations and adaptive cross- over probability can enlarge search scope and improve search performance. Secondly, using adaptive mutation probability and elite replacing mechanism can accelerate convergence speed. The approach is tested for some clas- sical benchmark JSPs taken from the literature and com- pared with some other approaches. The computational results show that the proposed AMGA can produce optimal or near-optimal values on almost all tested benchmark instances. Therefore, we can believe that AMGA can be considered as an effective method for solving JSP.
基金supported by the Gansu Natural Science Foundation (No.ZS011-A25-016-G).
文摘A new adaptive mutation particle swarm optimizer,which is based on the variance of the population's fitness,is presented in this paper.During the running time,the mutation probability for the current best particle is determined by two factors:the variance of the population's fitness and the current optimal solution.The ability of particle swarm optimization(PSO)algorithm to break away from the local optimum is greatly improved by the mutation.The experimental results show that the new algorithm not only has great advantage of convergence property over genetic algorithm and PSO,but can also avoid the premature convergence problem effectively.
基金supported by the National Natural Science Foundation of China (61172073)National Key Special Program(2012ZX03003005)+1 种基金the State Key Laboratory of Rail Traffic Control and Safety (RCS2011ZT003)Beijing Jiaotong University and the Fundamental Research Funds for the Central Universities
文摘Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization in CR, while general GA always fall into premature convergence. Thereafter, this paper proposed a linear scale transformation to the fitness of individual chromosome, which can reduce the impact of extraordinary individuals exiting in the early evolution iterations, and ensure competition between individuals in the latter evolution iterations. This paper also introduces an adaptive crossover and mutation probability algorithm into parameter adjustment, which can ensure the diversity and convergence of the population. Two applications are applied in the parameter adjustment of CR, one application prefers the bit error rate and another prefers the bandwidth. Simulation results show that the improved parameter adjustment algorithm can converge to the global optimal solution fast without falling into premature convergence.