期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PCA-MPA-ANFIS模型的年径流预测研究 被引量:23
1
作者 李代华 崔东文 《水电能源科学》 北大核心 2020年第7期24-29,共6页
为提高径流预测精度,提出一种将海洋捕食者算法(MPA)与自适应神经模糊推理系统(ANFIS)相结合的径流预测方法,选取6个标准测试函数对MPA进行仿真验证,并与PSO算法的仿真结果进行比较;通过主成分分析(PCA)对数据样本进行降维处理,使输入... 为提高径流预测精度,提出一种将海洋捕食者算法(MPA)与自适应神经模糊推理系统(ANFIS)相结合的径流预测方法,选取6个标准测试函数对MPA进行仿真验证,并与PSO算法的仿真结果进行比较;通过主成分分析(PCA)对数据样本进行降维处理,使输入数据简洁且更具代表性;利用MPA优化ANFIS条件参数和结论参数,建立PCA-MPA-ANFIS径流预测模型,并构建PCA-MPA-支持向量机(SVM)、PCA-MPA-BP作对比模型;基于云南省革雷站、新疆伊梨河雅马渡站年径流预测实例对PCA-MPA-ANFIS、PCA-MPASVM、PCA-MPA-BP模型进行验证。结果表明,MPA仿真效果优于PSO算法,具有较好的寻优精度和全局搜索能力;PCA-MPA-ANFIS模型对两个实例年径流预测的平均相对误差分别为1.08%、4.49%,平均相对误差较PCA-MPA-SVM模型分别降低了32.5%、37.1%,较PCA-MPA-BP模型分别降低了58.2%、37.6%,具有较好的预测精度和泛化能力。可见将PCA-MPA-ANFIS模型用于径流预测是可行和有效的。 展开更多
关键词 径流预测 自适应神经模糊推理系统 海洋捕食者算法 仿真验证 数据降维 参数优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部