期刊文献+
共找到1,349篇文章
< 1 2 68 >
每页显示 20 50 100
Seismic random noise suppression using an adaptive nonlocal means algorithm 被引量:9
1
作者 尚帅 韩立国 +1 位作者 吕庆田 谭尘青 《Applied Geophysics》 SCIE CSCD 2013年第1期33-40,117,118,共10页
Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures o... Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures of the image have a certain degree of repeatability that the random noise lacks. In this paper, we use nonlocal means filtering in seismic random noise suppression. To overcome the problems caused by expensive computational costs and improper filter parameters, this paper proposes a block-wise implementation of the nonlocal means method with adaptive filter parameter estimation. Tests with synthetic data and real 2D post-stack seismic data demonstrate that the proposed algorithm better preserves valid seismic information and has a higher accuracy when compared with traditional seismic denoising methods (e.g., f-x deconvolution), which is important for subsequent seismic processing and interpretation. 展开更多
关键词 seismic prospecting adaptive nonlocal means random noise attenuation
下载PDF
基于Non-Local means滤波的雾天降质图像恢复算法 被引量:2
2
作者 胡正平 荀娜娜 《四川兵工学报》 CAS 2010年第11期116-120,共5页
针对目前去雾算法易导致边缘晕环效应、边缘轮廓及景物特征比较模糊问题,提出了一种景深等先验信息未知条件下基于Non-Local means滤波的雾天降质图像恢复算法。首先,根据大气散射模型将经典的场景深度估计转化为大气面纱以及天空亮度估... 针对目前去雾算法易导致边缘晕环效应、边缘轮廓及景物特征比较模糊问题,提出了一种景深等先验信息未知条件下基于Non-Local means滤波的雾天降质图像恢复算法。首先,根据大气散射模型将经典的场景深度估计转化为大气面纱以及天空亮度估计,避免难求的场景深度图;然后,对雾天降质图像进行雾气平均化预处理,经过预处理图像平均亮度变小;其次,依据大气面纱的边缘跟雾天图像的低频具有大的相似性,采用Non-Localmeans滤波算法估计大气面纱模型;最后,为了使恢复图像的亮度跟色度都更加接近晴天图像,进行防止对比度放大的平滑与色度调整处理。通过与已有实验结果对比表明,提出的算法可以获得更精确的大气面纱,恢复图像不但边缘轮廓及景物特征都比较清楚,而且可有效抑制边缘晕环效应。 展开更多
关键词 大气散射模型 non-local means 大气面纱 去雾程度 图像恢复
下载PDF
Fast Non-Local Means Algorithm Based on Krawtchouk Moments 被引量:2
3
作者 吴一全 戴一冕 +1 位作者 殷骏 吴健生 《Transactions of Tianjin University》 EI CAS 2015年第2期104-112,共9页
Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical f... Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical for real applications. Thus, a fast non-local means algorithm based on Krawtchouk moments is proposed to improve the denoising performance and reduce the computing time. Krawtchouk moments of each image patch are calculated and used in the subsequent similarity measure in order to perform a weighted averaging. Instead of computing the Euclidean distance of two image patches, the similarity measure is obtained by low-order Krawtchouk moments, which can reduce a lot of computational complexity. Since Krawtchouk moments can extract local features and have a good antinoise ability, they can classify the useful information out of noise and provide an accurate similarity measure. Detailed experiments demonstrate that the proposed method outperforms the original NLM method and other moment-based methods according to a comprehensive consideration on subjective visual quality, method noise, peak signal to noise ratio(PSNR), structural similarity(SSIM) index and computing time. Most importantly, the proposed method is around 35 times faster than the original NLM method. 展开更多
关键词 IMAGE processing IMAGE DENOISING non-local means Krawtchouk MOMENTS SIMILARITY MEASURE
下载PDF
Improved Non-Local Means Algorithm for Image Denoising 被引量:4
4
作者 Lingli Huang 《Journal of Computer and Communications》 2015年第4期23-29,共7页
Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, a... Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, an improved weighted non-local means algorithm for image denoising is proposed. The non-local means denoising method replaces each pixel by the weighted average of pixels with the surrounding neighborhoods. The proposed method evaluates on testing images with various levels noise. Experimental results show that the algorithm improves the denoising performance. 展开更多
关键词 IMAGE DENOISING non-local means GAUSSIAN Noise
下载PDF
Local edge direction based non-local means for image denoising 被引量:2
5
作者 JIA Li-na JIAO Feng-yuan +1 位作者 LIU Rui-qiang GUI Zhi-guo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第3期236-240,共5页
Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhoo... Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhood. In the CNLM algorithm, the differences between the pixel value and the distance of the pixel to the center are both taken into consideration to calculate the weighting coefficients. However, the Gaussian kernel cannot reflect the information of edge and structure due to its isotropy, and it has poor performance in flat regions. In this paper, an improved non-local means algorithm based on local edge direction is presented for image denoising. In edge and structure regions, the steering kernel regression (SKR) coefficients are used to calculate the weights, and in flat regions the average kernel is used. Experiments show that the proposed algorithm can effectively protect edge and structure while removing noises better when compared with the CNLM algorithm. 展开更多
关键词 image denoising neighborhood filter non-local means (NLM) steering kernel regression (SKR)
下载PDF
Supervised local and non-local structure preserving projections with application to just-in-time learning for adaptive soft sensor 被引量:4
6
作者 邵伟明 田学民 王平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1925-1934,共10页
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring... In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP. 展开更多
关键词 adaptive soft sensor Just-in-time learning Supervised local and non-local structure preserving projections Locality preserving projections Database monitoring
下载PDF
Two Modifications of Weight Calculation of the Non-Local Means Denoising Method
7
作者 Musab Elkheir Salih Xuming Zhang Mingyue Ding 《Engineering(科研)》 2013年第10期522-526,共5页
The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponen... The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponential func-tion to improve the efficiency of the NLM denoising method. The cosine function outperforms in the high level noise more than low level noise. To increase the performance more in the low level noise we calculate the neighborhood si-milarity weights in a lower-dimensional subspace using singular value decomposition (SVD). Experimental compari-sons between the proposed modifications against the original NLM algorithm demonstrate its superior denoising per-formance in terms of peak signal to noise ratio (PSNR) and histogram, using various test images corrupted by additive white Gaussian noise (AWGN). 展开更多
关键词 non-local means SINGULAR VALUE DECOMPOSITION WEIGHT Calculation
下载PDF
基于交通拥堵信息的高速公路拥堵路段ACK-Means聚类
8
作者 陈昕 阮永娇 肇毓 《科学技术与工程》 北大核心 2024年第21期9194-9200,共7页
为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇... 为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇类密度、簇类间距以及簇类强度,同时又考虑到数据样本的偶然性,对离群点进行合理分配,ACK-Means算法可实现自适应确定聚类中心C和类别K值。基于实际交通拥堵信息构建数据集,Python编程实现高速公路拥堵路段ACK-Means聚类,巧妙解决了高速公路拥堵路段聚类数目K和聚类中心C设定问题。聚类结果表明,ACK-Means算法实现高速公路拥堵路段无监督聚类,聚类结果完全基于实际的高速公路交通拥堵信息,具有更高的实用性。 展开更多
关键词 交通拥堵聚类 ACK-means算法 自适应聚类中心 自适应K值 交通拥堵信息
下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:2
9
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
下载PDF
基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估 被引量:1
10
作者 管筝 印涌强 +1 位作者 张晓祥 陈跃红 《应用科学学报》 CAS CSCD 北大核心 2024年第3期388-404,共17页
为了更好地分析空间异质性对山洪灾害易发性评估的影响,建立了基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估模型。首先,选取中国江西省12338个小流域为研究区,对各时段不同频率降雨量指标进行K-means聚类。其次,以误差平... 为了更好地分析空间异质性对山洪灾害易发性评估的影响,建立了基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估模型。首先,选取中国江西省12338个小流域为研究区,对各时段不同频率降雨量指标进行K-means聚类。其次,以误差平方和与平均轮廓系数为聚类效果评价指标,将小流域分为2个类内聚集、类外分散的子集。最后,针对不同子集,从几何特征、环境特征以及降水特征3个方面选取平均坡度、形心高程、形状系数、最长汇流路径比降、地形湿度指数、归一化植被指数、距离河流最近距离、降雨量、洪峰模数以及汇流时间10个山洪影响因素,应用自适应增强算法与极致梯度提升算法进行山洪灾害易发性评估。研究发现,降水是导致山洪灾害的重要因素,江西省高降水区域山洪灾害易发程度普遍高于低降水区,同时省内高风险区分布较为分散,主要分布在东北区域与西北边缘区域。对聚类后两类相似小流域分别进行山洪易发性评估,接受者操作特征曲线下面积值均在0.90以上,精度较聚类前有所提高。聚类策略作为易发性评估模型的前驱过程,可以有效解决小流域异质性问题。 展开更多
关键词 空间异质性 K-means聚类 集成学习 自适应增强 极致梯度提升 山洪灾害
下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
11
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction Empirical mode decomposition(EMD) Ensemble EMD(EEMD) Complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
下载PDF
融合异常检测与区域分割的高效K-means聚类算法
12
作者 尹宏伟 杭雨晴 胡文军 《郑州大学学报(工学版)》 CAS 北大核心 2024年第3期80-88,共9页
传统K-means及其众多改进算法缺乏显式处理异常样本的能力,导致其聚类性能容易受到异常样本的影响。针对此问题,提出一种融合异常检测与区域分割的高效K-means聚类算法。首先,通过构建统一聚类模型,形成异常检测与聚类之间的交互协同,... 传统K-means及其众多改进算法缺乏显式处理异常样本的能力,导致其聚类性能容易受到异常样本的影响。针对此问题,提出一种融合异常检测与区域分割的高效K-means聚类算法。首先,通过构建统一聚类模型,形成异常检测与聚类之间的交互协同,以提高聚类性能。其次,利用近邻簇搜索技术对各类簇进行自适应的区域分割,以减少冗余计算,提高算法执行效率。最后,为验证所提方法的有效性,在多个合成数据集和真实数据集上分别进行测试。实验结果表明:所提算法聚类性能和执行效率优于其他算法;在添加10%异常样本的Wine数据集上准确度可达0.911。 展开更多
关键词 聚类 K-means 异常检测 区域分割 近邻簇搜索 自适应
下载PDF
Low Complexity Minimum Mean Square Error Channel Estimation for Adaptive Coding and Modulation Systems 被引量:2
13
作者 GUO Shuxia SONG Yang +1 位作者 GAO Ying HAN Qianjin 《China Communications》 SCIE CSCD 2014年第1期126-137,共12页
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio... Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances. 展开更多
关键词 adaptive coding and modulation channel estimation minimum mean square error low-complexity minimum mean square error
下载PDF
Vibration Suppression for Active Magnetic Bearings Using Adaptive Filter with Iterative Search Algorithm
14
作者 Jin-Hui Ye Dan Shi +2 位作者 Yue-Sheng Qi Jin-Hui Gao Jian-Xin Shen 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期61-71,共11页
Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the... Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively. 展开更多
关键词 Active Magnetic Bearing(AMB) adaptive filter Iterative search algorithm Least mean square(LMS) Vibration suppression
下载PDF
Validity of non-local mean filter and novel denoising method 被引量:1
15
作者 Xiangyuan LIU Zhongke WU Xingce WANG 《Virtual Reality & Intelligent Hardware》 EI 2023年第4期338-350,共13页
Background Image denoising is an important topic in the digital image processing field.This study theoretically investigates the validity of the classical nonlocal mean filter(NLM)for removing Gaussian noise from a no... Background Image denoising is an important topic in the digital image processing field.This study theoretically investigates the validity of the classical nonlocal mean filter(NLM)for removing Gaussian noise from a novel statistical perspective.Method By considering the restored image as an estimator of the clear image from a statistical perspective,we gradually analyze the unbiasedness and effectiveness of the restored value obtained by the NLM filter.Subsequently,we propose an improved NLM algorithm called the clustering-based NLM filter that is derived from the conditions obtained through the theoretical analysis.The proposed filter attempts to restore an ideal value using the approximately constant intensities obtained by the image clustering process.In this study,we adopt a mixed probability model on a prefiltered image to generate an estimator of the ideal clustered components.Result The experiment yields improved peak signal-to-noise ratio values and visual results upon the removal of Gaussian noise.Conclusion However,the considerable practical performance of our filter demonstrates that our method is theoretically acceptable as it can effectively estimate ideal images. 展开更多
关键词 Gaussian noise non-local means filter UNBIASEDNESS EFFECTIVENESS
下载PDF
基于邻域互信息与K-means特征聚类的特征选择 被引量:1
16
作者 孙林 梁娜 徐久成 《智能系统学报》 CSCD 北大核心 2024年第4期983-996,共14页
针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为... 针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为自适应邻域半径,确定样本的邻域集,并由此构建自适应邻域熵、邻域互信息、归一化邻域互信息等度量,反映特征之间的相关性;然后,基于归一化邻域互信息构建自适应K近邻集合,利用Pearson相关系数表示特征的权重定义加权K近邻密度,实现自动选取K-means算法的簇中心,进而完成K-means特征聚类;最后,给出加权平均冗余度,选出每个特征簇中加权平均冗余度最大的特征构成最优特征子集。实验结果表明所提算法不仅可以有效提升特征选择的分类结果而且可以获得更好的聚类效果。 展开更多
关键词 特征选择 邻域互信息 K-means 特征聚类 自适应K近邻 特征权重 加权K近邻密度
下载PDF
A new method of lung sounds filtering using modulated least mean square—Adaptive noise cancellation
17
作者 Noman Qaid Al-Naggar 《Journal of Biomedical Science and Engineering》 2013年第9期869-876,共8页
Advanced processing of lung sound (LS) recording is a significant means to separate heart sounds (HS) and combined low frequency noise from instruments (NI), with saving its characteristics. This paper proposes a new ... Advanced processing of lung sound (LS) recording is a significant means to separate heart sounds (HS) and combined low frequency noise from instruments (NI), with saving its characteristics. This paper proposes a new method of LS filtering which separates HS and NI simultaneously. It focuses on the application of least mean squares (LMS) algorithm with adaptive noise cancelling (ANC) technique. The second step of the new method is to modulate the reference input r1(n) of LMS-ANC to acquiesce combining HS and NI signals. The obtained signal is removed from primary signal (original lung sound recording-LS). The original signal is recorded from subjects and derived HS from it and it is modified by a band pass filter. NI is simulated by generating approximately periodic white gaussian noise (WGN) signal. The LMS-ANC designed algorithm is controlled in order to determine the optimum values of the order L and the coefficient convergence μ. The output results are measured using power special density (PSD), which has shown the effectiveness of our suggested method. The result also has shown visual difference PSD (to) normal and abnormal LS recording. The results show that the method is a good technique for heart sound and noise reduction from lung sounds recordings simultaneously with saving LS characteristics. 展开更多
关键词 LUNG SOUND FILTERING of LUNG SOUND Least mean SQUARES Algorithm adaptive Noise Cancelling
下载PDF
基于自适应遗传优化k-means算法的高校学情分析
18
作者 张露露 《吉林农业科技学院学报》 2024年第3期17-20,68,共5页
为对高校学生学习过程与学习行为进行深度分析,帮助教师实现精准化教学,本文基于某高校计算机及相关专业学生数字逻辑课程学习过程相关数据,探索一种自适应策略的遗传优化k-means算法来进行高校学情分析。首先针对k-means算法存在的不足... 为对高校学生学习过程与学习行为进行深度分析,帮助教师实现精准化教学,本文基于某高校计算机及相关专业学生数字逻辑课程学习过程相关数据,探索一种自适应策略的遗传优化k-means算法来进行高校学情分析。首先针对k-means算法存在的不足,提出通过遗传算法的交叉操作和变异操作获取最优解,同时通过自适应策略动态地调整交叉概率和变异概率,避免过早产生次优解;其次对学生数字逻辑学习过程相关数据执行自适应策略的遗传优化k-means算法;最后对算法执行结果进行分析。结果表明,本文研究的基于自适应策略的遗传优化k-means算法能够获得更加有效的分析结果。 展开更多
关键词 学情分析 K-means算法 遗传优化 自适应
下载PDF
一种分层自适应快速K-means算法 被引量:7
19
作者 张晓琳 崔宁宁 +1 位作者 杨涛 李洁 《计算机应用研究》 CSCD 北大核心 2016年第2期421-423,427,共4页
提出一种分层自适应快速K-means(hierarchical adaptive fast K-means,HAFKM)算法对图像数据库分类聚簇。HAFKM根据提出的分层策略构建一棵非平衡聚类树,通过自适应的方法 CEC(cluster evaluation criterion)确定了除根节点外的每棵子... 提出一种分层自适应快速K-means(hierarchical adaptive fast K-means,HAFKM)算法对图像数据库分类聚簇。HAFKM根据提出的分层策略构建一棵非平衡聚类树,通过自适应的方法 CEC(cluster evaluation criterion)确定了除根节点外的每棵子树的分支数目,而在聚类树的每一层聚类中使用一种提出的判别函数(cost-function)在颜色直方图上根据颜色等级直接聚类,从而可以在整棵树上快速聚类。实验表明,HAFKM算法通过在非平衡树上逐层聚类,并且通过CEC准确判断聚类数目,可以快速、高效地实现数据库的分类聚簇。 展开更多
关键词 HAFKM K—means算法 分层聚类 自适应 大数据库 聚类树
下载PDF
优化初始聚类中心的改进k-means算法 被引量:56
20
作者 张靖 段富 《计算机工程与设计》 CSCD 北大核心 2013年第5期1691-1694,1699,共5页
传统k-means算法随机选取初始聚类中心使聚类结果不稳定,诸多优化算法的时间复杂度较高,为了提高聚类稳定性并降低时间复杂度,提出了基于个体轮廓系数自适应地选取优秀样本以确定初始聚类中心的改进k-means算法。该算法多次调用传统k-me... 传统k-means算法随机选取初始聚类中心使聚类结果不稳定,诸多优化算法的时间复杂度较高,为了提高聚类稳定性并降低时间复杂度,提出了基于个体轮廓系数自适应地选取优秀样本以确定初始聚类中心的改进k-means算法。该算法多次调用传统k-means算法聚类,根据k个类中心的个体轮廓系数以及各样本与类中心的距离,自适应地选取优秀样本,求其均值作为初始聚类中心。在多个UCI数据集上的实验表明,该算法聚类时间短,具有较高的轮廓系数和准确率。 展开更多
关键词 聚类 K均值算法 初始聚类中心 个体轮廓系数 自适应
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部