In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. ...In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. Using general HSlder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.展开更多
The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between ...The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between exploration and exploitation, especially when tackling multimodal optimization problems. Aiming to deal with the above problems, we propose an enhanced variant of SSA called the multi-strategy enhanced sparrow search algorithm(MSSSA) in this paper. First, a chaotic map is introduced to obtain a high-quality initial population for SSA, and the opposition-based learning strategy is employed to increase the population diversity. Then, an adaptive parameter control strategy is designed to accommodate an adequate balance between exploration and exploitation. Finally, a hybrid disturbance mechanism is embedded in the individual update stage to avoid falling into local optima. To validate the effectiveness of the proposed MSSSA, a large number of experiments are implemented, including 40 complex functions from the IEEE CEC2014 and IEEE CEC2019 test suites and 10 classical functions with different dimensions. Experimental results show that the MSSSA achieves competitive performance compared with several state-of-the-art optimization algorithms. The proposed MSSSA is also successfully applied to solve two engineering optimization problems. The results demonstrate the superiority of the MSSSA in addressing practical problems.展开更多
基金National Institute of Technology Karnataka, India, for the financial support
文摘In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. Using general HSlder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.
基金Project supported by the National Natural Science Foundation of China (Nos.62022015 and 62088101)the Shanghai Municipal Science and Technology Major Project,China(No.2021SHZDZX0100)the Shanghai Municipal Commission of Science and Technology Project,China (No.19511132101)。
文摘The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between exploration and exploitation, especially when tackling multimodal optimization problems. Aiming to deal with the above problems, we propose an enhanced variant of SSA called the multi-strategy enhanced sparrow search algorithm(MSSSA) in this paper. First, a chaotic map is introduced to obtain a high-quality initial population for SSA, and the opposition-based learning strategy is employed to increase the population diversity. Then, an adaptive parameter control strategy is designed to accommodate an adequate balance between exploration and exploitation. Finally, a hybrid disturbance mechanism is embedded in the individual update stage to avoid falling into local optima. To validate the effectiveness of the proposed MSSSA, a large number of experiments are implemented, including 40 complex functions from the IEEE CEC2014 and IEEE CEC2019 test suites and 10 classical functions with different dimensions. Experimental results show that the MSSSA achieves competitive performance compared with several state-of-the-art optimization algorithms. The proposed MSSSA is also successfully applied to solve two engineering optimization problems. The results demonstrate the superiority of the MSSSA in addressing practical problems.