针对粒子群优化算法(Particle Swarm Optimization,简称PSO)容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,提出了基于中心位的粒子群优化算法(Particle swarm optimization algorithm based on center particle,简称CPPSO)。...针对粒子群优化算法(Particle Swarm Optimization,简称PSO)容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,提出了基于中心位的粒子群优化算法(Particle swarm optimization algorithm based on center particle,简称CPPSO)。该算法采取双策略更新粒子位置,一种通过随机惯性权重作用的粒子和影响算子作用的个体极值、全局极值来更新粒子位置,另一种在之前更新的粒子位置基础上,通过中心位采用差分算法来更新粒子位置。通过和其他3种优化算法在18个典型基准函数的仿真测试结果表明,该算法具有更好的全局收敛能力,其收敛速度、寻优精度和稳定性都有明显的提升。展开更多
文摘针对粒子群优化算法(Particle Swarm Optimization,简称PSO)容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,提出了基于中心位的粒子群优化算法(Particle swarm optimization algorithm based on center particle,简称CPPSO)。该算法采取双策略更新粒子位置,一种通过随机惯性权重作用的粒子和影响算子作用的个体极值、全局极值来更新粒子位置,另一种在之前更新的粒子位置基础上,通过中心位采用差分算法来更新粒子位置。通过和其他3种优化算法在18个典型基准函数的仿真测试结果表明,该算法具有更好的全局收敛能力,其收敛速度、寻优精度和稳定性都有明显的提升。