In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat...In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.展开更多
The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pac...The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%.展开更多
Time-varying frequency selective attenuation and colored noises are unfavorable characteristics of power line communication(PLC) channels of the low voltage networks.To overcome these disadvantages,a novel real-time d...Time-varying frequency selective attenuation and colored noises are unfavorable characteristics of power line communication(PLC) channels of the low voltage networks.To overcome these disadvantages,a novel real-time dynamic spectrum management(DSM) algorithm in orthogonal frequency division multiplexing(OFDM)-based high-speed narrow-band power line communication(HNPLC) systems is proposed,and the corresponding FPGA circuit is designed and realized.Performance of the proposed DSM is validated with a large amount of network experiments under practical PLC circumstance.As the noise in each narrow subcarrier is approximately Gaussian,the proposed DSM adopts the BER/SER expression formulized via the AWGN channel to provide a handy and universal strategy for power allocation.The real-time requirement is guaranteed by choosing subcarriers in group and employing the same modulation scheme within each transmission.These measures are suitable for any modulation scheme no matter the system criterion is to maximize data rate or minimize power/BER.Algorithm design and hardware implementation of the proposed DSM are given with some flexible and efficient conversions.The DSM circuit is carried out with Xilinx KC705.Simulation and practical experiments validate that the proposed real-time DSM significantly improves system performance.展开更多
With the consideration of the thermal management and heat sink requirements,a cooling device is designed and the thermal resistance of this device is calculated with a single 5 W power LED.The thermal design of a sing...With the consideration of the thermal management and heat sink requirements,a cooling device is designed and the thermal resistance of this device is calculated with a single 5 W power LED.The thermal design of a single 5 W power LED is reasonable,effective and the result has been simulated.This design also instruct other power LEDs' thermal design.Provided is a reliable and effective method for the design of power LED illumination lamps and lanterns.展开更多
The radar power supplies exhibit a complex electronics. The development of more and more compact systems leads to master the interaction between different parts of the power supply while reducing electronic circuits, ...The radar power supplies exhibit a complex electronics. The development of more and more compact systems leads to master the interaction between different parts of the power supply while reducing electronic circuits, magnetic and thermal couplings from the constitutive circuitry. The consideration of these phenomena is very difficult at the design of the power supply. This paper presents two complementary methods based first on a circuitry model for the quantification of heat sources and secondly on finite element model for heat diffusion. This approach can help a designer in the goal of improving the performances and thermal stability of radar tied to the supply circuit subset.展开更多
Due to the pneumatic heating and combustion effect,the scramjet engine of hypersonic vehicle faces high temperature challenge.It is necessary to comprehensively consider its thermal management and power generation tog...Due to the pneumatic heating and combustion effect,the scramjet engine of hypersonic vehicle faces high temperature challenge.It is necessary to comprehensively consider its thermal management and power generation together.A new Power and Thermal Management System(PTMS)combined with Supercritical Carbon Dioxide(SCO_(2))closed Brayton cycle and fuel vapor turbine is proposed and discussed in this paper.The new PTMS can meet the cooling requirement of hypersonic vehicle at Mach number 6–7,and avoid the coking and scrapping in the scramjet cooling channels.Compared with the PTMS only based on fuel vapor turbine,the new PTMS utilizes the waste heat of scramjet to generate more electricity.In addition,it can reduce the use of fuel sink for cooling,and the additional weight penalty can be compensated for long endurance hypersonic flight.展开更多
High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-...High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-IPEM), consisting of two chip scale packaged MOSFETs and the corresponding gate driver and protection circuits, is fabricated at the laboratory. The reliability of the IPEM is controlled from the shape design of solder joints and the control of assembly process parameters. The parasitic parameters are extracted using Agilent 4395A impedance analyzer for building the parasitic parameter model of the HB- IPEM. A 12 V/3 A output synchronous rectifier Buck converter using the HB-IPEM is built to test the electrical performance of the HB-IPEM. Low voltage spikes on two MOSFETs illustrate that the three-dimensional package of the HB-IPEM can decrease parasitic inductance. Temperature distribution simulation results of the HB-IPEM using FLOTHERM are given. Heat dissipation of the solder joints makes the peak junction temperature of the chip drop obviously. The package realizes three-dimensional heat dissipation and has better thermal management.展开更多
Under the dual effects of aerodynamic heating and high-power electronic equipment heating,the heat sink and power demand of advanced high-speed aircraft have been exponentially rising,which seriously restricts the air...Under the dual effects of aerodynamic heating and high-power electronic equipment heating,the heat sink and power demand of advanced high-speed aircraft have been exponentially rising,which seriously restricts the aircraft performance.To improve system cooling and power supply performance and reduce engine performance loss,a power and thermal management system(PTMS)with high performance,low energy consumption,and light weight urgently needs to be developed.In this paper,three modes of a potential PTMS with different heat sinks and bleed air sources are further discussed to analyze and compare the optimal matching with the flight mission at Mach 1-4.4.The equivalent mass method is used to uniformly assess the costs of the fixed weight,bleed,resistance,etc.as a function of the fuel weight penalty,which is chosen as the optimization objective.The optimization variables consist of the compressor outlet temperature,cooling air flow rate,and fan duct heat exchanger structure size.The results show that the intermediate-stage bleed air and fan duct heat sink are more suitable when the Mach number is less than 2,but the ram air bleed is highly suitable for flight missions at a high Mach number.Especially at Mach 3.4-4.4,the ram air bleed mode can respond to the cooling and power demands with a simple architecture.展开更多
Electric vehicles(EVs)are globally undergoing rapid developments,and have great potentials to replace the traditional vehicles based on fossil fuels.Power-type lithium-ion batteries(LIBs)have been widely used for EVs,...Electric vehicles(EVs)are globally undergoing rapid developments,and have great potentials to replace the traditional vehicles based on fossil fuels.Power-type lithium-ion batteries(LIBs)have been widely used for EVs,owing to high power densities,good charge/discharge stability,and long cycle life.The driving ranges and acceleration performances are gaining increasing concerns from customers,which depend highly on the power level of LIBs.With the increase in power outputs,rising heat generation significantly affects the battery performances,and in particular operation safety.Meanwhile,the cold-start performance is still an intractable problem under extreme conditions.These challenges put forward higher requirements for a dedicated battery thermal management system(BTMS).Compared to traditional BTMSs in EVs,the heat pipe-based BTMS has great application prospects owing to its compact structure,flexibility,low cost,and especially high thermal conductivity.Encompassing this topic,this review first introduces heat generation phenomena and temperature characteristics of LIBs.Multiple abuse conditions and thermal runaway issues are described afterward.Typical cooling and preheating methods for designing a BTMS are also discussed.More emphasis on this review is put on the use of various heat pipes for BTMSs to enhance the thermal performances of LIBs.For lack of wide application in actual EVs,more efforts should be made to extend the use of heat pipes for constructing an energy-efficient,cost-effective,and reliable BTMS to improve the performances and safety of EVs.展开更多
文摘In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.
基金support provided National Natural Science Foundation of China with Grant No.51976016Natural Science Foundation of Hunan Province,China with Grant No.2020JJ4616Research Foundation of Education Bureau of Hunan Province(18B149).
文摘The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%.
基金Supported by the Tsinghua University International Science and Technology Cooperation Project(No.20133000197,20123000148)
文摘Time-varying frequency selective attenuation and colored noises are unfavorable characteristics of power line communication(PLC) channels of the low voltage networks.To overcome these disadvantages,a novel real-time dynamic spectrum management(DSM) algorithm in orthogonal frequency division multiplexing(OFDM)-based high-speed narrow-band power line communication(HNPLC) systems is proposed,and the corresponding FPGA circuit is designed and realized.Performance of the proposed DSM is validated with a large amount of network experiments under practical PLC circumstance.As the noise in each narrow subcarrier is approximately Gaussian,the proposed DSM adopts the BER/SER expression formulized via the AWGN channel to provide a handy and universal strategy for power allocation.The real-time requirement is guaranteed by choosing subcarriers in group and employing the same modulation scheme within each transmission.These measures are suitable for any modulation scheme no matter the system criterion is to maximize data rate or minimize power/BER.Algorithm design and hardware implementation of the proposed DSM are given with some flexible and efficient conversions.The DSM circuit is carried out with Xilinx KC705.Simulation and practical experiments validate that the proposed real-time DSM significantly improves system performance.
文摘With the consideration of the thermal management and heat sink requirements,a cooling device is designed and the thermal resistance of this device is calculated with a single 5 W power LED.The thermal design of a single 5 W power LED is reasonable,effective and the result has been simulated.This design also instruct other power LEDs' thermal design.Provided is a reliable and effective method for the design of power LED illumination lamps and lanterns.
文摘The radar power supplies exhibit a complex electronics. The development of more and more compact systems leads to master the interaction between different parts of the power supply while reducing electronic circuits, magnetic and thermal couplings from the constitutive circuitry. The consideration of these phenomena is very difficult at the design of the power supply. This paper presents two complementary methods based first on a circuitry model for the quantification of heat sources and secondly on finite element model for heat diffusion. This approach can help a designer in the goal of improving the performances and thermal stability of radar tied to the supply circuit subset.
文摘Due to the pneumatic heating and combustion effect,the scramjet engine of hypersonic vehicle faces high temperature challenge.It is necessary to comprehensively consider its thermal management and power generation together.A new Power and Thermal Management System(PTMS)combined with Supercritical Carbon Dioxide(SCO_(2))closed Brayton cycle and fuel vapor turbine is proposed and discussed in this paper.The new PTMS can meet the cooling requirement of hypersonic vehicle at Mach number 6–7,and avoid the coking and scrapping in the scramjet cooling channels.Compared with the PTMS only based on fuel vapor turbine,the new PTMS utilizes the waste heat of scramjet to generate more electricity.In addition,it can reduce the use of fuel sink for cooling,and the additional weight penalty can be compensated for long endurance hypersonic flight.
基金Fok Ying Tung Education Foundation(No.91058)the Natural Science Foundation of High Education Institutions of Jiangsu Province(No.08KJD470004)Qing Lan Project of Jiangsu Province of 2008
文摘High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-IPEM), consisting of two chip scale packaged MOSFETs and the corresponding gate driver and protection circuits, is fabricated at the laboratory. The reliability of the IPEM is controlled from the shape design of solder joints and the control of assembly process parameters. The parasitic parameters are extracted using Agilent 4395A impedance analyzer for building the parasitic parameter model of the HB- IPEM. A 12 V/3 A output synchronous rectifier Buck converter using the HB-IPEM is built to test the electrical performance of the HB-IPEM. Low voltage spikes on two MOSFETs illustrate that the three-dimensional package of the HB-IPEM can decrease parasitic inductance. Temperature distribution simulation results of the HB-IPEM using FLOTHERM are given. Heat dissipation of the solder joints makes the peak junction temperature of the chip drop obviously. The package realizes three-dimensional heat dissipation and has better thermal management.
文摘Under the dual effects of aerodynamic heating and high-power electronic equipment heating,the heat sink and power demand of advanced high-speed aircraft have been exponentially rising,which seriously restricts the aircraft performance.To improve system cooling and power supply performance and reduce engine performance loss,a power and thermal management system(PTMS)with high performance,low energy consumption,and light weight urgently needs to be developed.In this paper,three modes of a potential PTMS with different heat sinks and bleed air sources are further discussed to analyze and compare the optimal matching with the flight mission at Mach 1-4.4.The equivalent mass method is used to uniformly assess the costs of the fixed weight,bleed,resistance,etc.as a function of the fuel weight penalty,which is chosen as the optimization objective.The optimization variables consist of the compressor outlet temperature,cooling air flow rate,and fan duct heat exchanger structure size.The results show that the intermediate-stage bleed air and fan duct heat sink are more suitable when the Mach number is less than 2,but the ram air bleed is highly suitable for flight missions at a high Mach number.Especially at Mach 3.4-4.4,the ram air bleed mode can respond to the cooling and power demands with a simple architecture.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant Nos.2019B090909001 and 2020B090920002)the National Natural Science Foundation of China(Grant Nos.51975218 and 51722504)+1 种基金Guangdong Science and Technology Plan Program(Grant No.2017KZ010105)Fundamental Research Funds for the Central Universities(Grant No.2018ZD31)。
文摘Electric vehicles(EVs)are globally undergoing rapid developments,and have great potentials to replace the traditional vehicles based on fossil fuels.Power-type lithium-ion batteries(LIBs)have been widely used for EVs,owing to high power densities,good charge/discharge stability,and long cycle life.The driving ranges and acceleration performances are gaining increasing concerns from customers,which depend highly on the power level of LIBs.With the increase in power outputs,rising heat generation significantly affects the battery performances,and in particular operation safety.Meanwhile,the cold-start performance is still an intractable problem under extreme conditions.These challenges put forward higher requirements for a dedicated battery thermal management system(BTMS).Compared to traditional BTMSs in EVs,the heat pipe-based BTMS has great application prospects owing to its compact structure,flexibility,low cost,and especially high thermal conductivity.Encompassing this topic,this review first introduces heat generation phenomena and temperature characteristics of LIBs.Multiple abuse conditions and thermal runaway issues are described afterward.Typical cooling and preheating methods for designing a BTMS are also discussed.More emphasis on this review is put on the use of various heat pipes for BTMSs to enhance the thermal performances of LIBs.For lack of wide application in actual EVs,more efforts should be made to extend the use of heat pipes for constructing an energy-efficient,cost-effective,and reliable BTMS to improve the performances and safety of EVs.