期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pressure Regulation for Earth Pressure Balance Control on Shield Tunneling Machine by Using Adaptive Robust Control 被引量:7
1
作者 XIE Haibo LIU Zhibin YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期598-606,共9页
Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control o... Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control(ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation. 展开更多
关键词 shield tunneling machine pressure regulation adaptive robust control
下载PDF
Simple adaptive air-fuel ratio control of a port injection SI engine with a cylinder pressure sensor 被引量:2
2
作者 Chanyut KHAJORNTRAIDET Kazuhisa ITO 《Control Theory and Technology》 EI CSCD 2015年第2期141-150,共3页
The problem of air-fuel ratio(AFR) control of the port injection spark ignition(SI) engine is still of considerable importance because of stringent demands on emission control. In this paper, the static AFR calculatio... The problem of air-fuel ratio(AFR) control of the port injection spark ignition(SI) engine is still of considerable importance because of stringent demands on emission control. In this paper, the static AFR calculation model based on in-cylinder pressure data and on the adaptive AFR control strategy is presented. The model utilises the intake manifold pressure, engine speed, total heat release, and the rapid burn angle, as input variables for the AFR computation. The combustion parameters, total heat release,and rapid burn angle, are calculated from in-cylinder pressure data. This proposed AFR model can be applied to the virtual lambda sensor for the feedback control system. In practical applications, simple adaptive control(SAC) is applied in conjunction with the AFR model for port-injected fuel control. The experimental results show that the proposed model can estimate the AFR, and the accuracy of the estimated value is applicable to the feedback control system. Additionally, the adaptive controller with the AFR model can be applied to regulate the AFR of the port injection SI engine. 展开更多
关键词 Spark ignition engine in-cylinder pressure simple adaptive control air-fuel ratio estimation and control
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部