A dynamic pricing model was established based on forecasting the demand for container handling of a specific shipping company to maximize terminal profits to solve terminal handling charges under the changing market e...A dynamic pricing model was established based on forecasting the demand for container handling of a specific shipping company to maximize terminal profits to solve terminal handling charges under the changing market environment.It assumes that container handling demand depends on the price and the unknown parameters in the demand model.The maximum quasi-likelihood estimation(MQLE)method is used to estimate the unknown parameters.Then an adaptive dynamic pricing policy algorithm is proposed.At the beginning of each period,through dynamic pricing,determining the optimal price relative to the estimation value of the current parameter and attach a constraint of differential price decision.Meanwhile,the accuracy of demand estimation and the optimality of price decisions are balanced.Finally,a case study is given based on the real data of Shanghai port.The results show that this pricing policy can make the handling price converge to the stable price and significantly increase this shipping company’s handling profit compared with the original“contractual pricing”mechanism.展开更多
Aiming at solving the problem that it is challenging to choose the appropriate price adjustment strategy according to the market fluctuations,an adaptive price adjustment method based on dual deep fuzzy networks(DDFN)...Aiming at solving the problem that it is challenging to choose the appropriate price adjustment strategy according to the market fluctuations,an adaptive price adjustment method based on dual deep fuzzy networks(DDFN)is designed.First,a price adjustment model based on DDFN is established.Through interactively learning the recycling market environment,the description of the mapping relationship between the market environment information and the price adjustment action is realized.Second,based on a greedy strategy to calculate the optimal price adjustment action,it is possible to make small adjustments based on the preliminary estimated value of the waste mobile phone,and complete the judgment of the mobile phone recycling price.Third,based on the market feedback,the gradient descent algorithm is used to update parameters of the model to improve the performance.The proposed adaptive price adjustment method based on DDFN is applied to the actual transaction process,and the results show that the proposed method can ensure the accuracy and reliability of the adjustment results of the mobile phone recycling price.展开更多
文摘A dynamic pricing model was established based on forecasting the demand for container handling of a specific shipping company to maximize terminal profits to solve terminal handling charges under the changing market environment.It assumes that container handling demand depends on the price and the unknown parameters in the demand model.The maximum quasi-likelihood estimation(MQLE)method is used to estimate the unknown parameters.Then an adaptive dynamic pricing policy algorithm is proposed.At the beginning of each period,through dynamic pricing,determining the optimal price relative to the estimation value of the current parameter and attach a constraint of differential price decision.Meanwhile,the accuracy of demand estimation and the optimality of price decisions are balanced.Finally,a case study is given based on the real data of Shanghai port.The results show that this pricing policy can make the handling price converge to the stable price and significantly increase this shipping company’s handling profit compared with the original“contractual pricing”mechanism.
基金supported by the National Key Research and Development Project(Grant No.2018YFC1900800-5)the National Natural Science Foundation of China(Grant Nos.61890930-5,61903010,62021003 and62125301)+1 种基金Beijing Natural Science Foundation(Grant No.KZ202110005009)Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH 01201910005020)。
文摘Aiming at solving the problem that it is challenging to choose the appropriate price adjustment strategy according to the market fluctuations,an adaptive price adjustment method based on dual deep fuzzy networks(DDFN)is designed.First,a price adjustment model based on DDFN is established.Through interactively learning the recycling market environment,the description of the mapping relationship between the market environment information and the price adjustment action is realized.Second,based on a greedy strategy to calculate the optimal price adjustment action,it is possible to make small adjustments based on the preliminary estimated value of the waste mobile phone,and complete the judgment of the mobile phone recycling price.Third,based on the market feedback,the gradient descent algorithm is used to update parameters of the model to improve the performance.The proposed adaptive price adjustment method based on DDFN is applied to the actual transaction process,and the results show that the proposed method can ensure the accuracy and reliability of the adjustment results of the mobile phone recycling price.