The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and...The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process展开更多
The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for cancelin...The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.展开更多
为提高电池重组时的均衡效率,在传统Buck-Boost均衡拓扑电路的基础上,设计了一种锂电池组双层均衡拓扑电路。组内采用Buck-Boost电路均衡,组间利用双向反激变压器进行均衡。均衡控制策略采用自适应模糊PID算法,以电池荷电状态(state of ...为提高电池重组时的均衡效率,在传统Buck-Boost均衡拓扑电路的基础上,设计了一种锂电池组双层均衡拓扑电路。组内采用Buck-Boost电路均衡,组间利用双向反激变压器进行均衡。均衡控制策略采用自适应模糊PID算法,以电池荷电状态(state of charge, SOC)为均衡变量,利用模糊控制算法对PID参数进行调节,缩短了均衡时间,提高了均衡效率。在Matlab/Simulink中搭建了锂电池组双层均衡拓扑电路和自适应模糊PID控制算法模型。实验结果表明:在不同工作状态下,所提出的电池组均衡拓扑及其控制策略将均衡时间效率平均提高了58.36%,验证了该方案的有效性。展开更多
The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control Sy...The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation ...The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation is done to test the feasibility of the control system. The neural network idea and the structure of PID controller are referred to design the adaptive PID controller. An intelligent integral is introduced to improve control precision. Compaed with traditional PID con- trollers, the adaptive PID controller has simple structure, good online adjusting ability, fast convergence and good robustness. The simulation experiments also show that the adaptive PID control system has high precision and fine antijamming ability.展开更多
Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time...Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.展开更多
An adaptive proportional–integral–derivative(PID)controller based on Q-learning algorithm is proposed to balance the cart–pole system in simulation environment.This controller was trained using Q-learning algorithm...An adaptive proportional–integral–derivative(PID)controller based on Q-learning algorithm is proposed to balance the cart–pole system in simulation environment.This controller was trained using Q-learning algorithm and implemented the learned Q-tables to change the gains of linear PID controllers according to the state of the system during the control process.The adaptive PID controller based on Q-learning algorithm was trained from a set of fixed initial positions and was able to balance the system starting from a series of initial positions that are different from the ones used in the training session,which achieved equivalent or even better performances in comparison with the conventional PID controller and the controller only uses Q-learning algorithm.This indicates the advantage of the adaptive PID controller based on Q-learning algorithm both in the generality of balancing the cart–pole system from a relatively wide range of initial positions and in the stabilisability of achieving smaller steady-state error.展开更多
Aimed at the lack of self-tuning PID parameters in conventional PID controllers, the structure and learning algorithm of an adaptive PID controller based on reinforcement learning were proposed. Actor-Critic learning ...Aimed at the lack of self-tuning PID parameters in conventional PID controllers, the structure and learning algorithm of an adaptive PID controller based on reinforcement learning were proposed. Actor-Critic learning was used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network was used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for complex nonlinear systems and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.展开更多
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant...The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.展开更多
基金the Key Technologies R&D Program of Harbin (0111211102).
文摘The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process
文摘The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.
文摘为提高电池重组时的均衡效率,在传统Buck-Boost均衡拓扑电路的基础上,设计了一种锂电池组双层均衡拓扑电路。组内采用Buck-Boost电路均衡,组间利用双向反激变压器进行均衡。均衡控制策略采用自适应模糊PID算法,以电池荷电状态(state of charge, SOC)为均衡变量,利用模糊控制算法对PID参数进行调节,缩短了均衡时间,提高了均衡效率。在Matlab/Simulink中搭建了锂电池组双层均衡拓扑电路和自适应模糊PID控制算法模型。实验结果表明:在不同工作状态下,所提出的电池组均衡拓扑及其控制策略将均衡时间效率平均提高了58.36%,验证了该方案的有效性。
文摘The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
文摘The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation is done to test the feasibility of the control system. The neural network idea and the structure of PID controller are referred to design the adaptive PID controller. An intelligent integral is introduced to improve control precision. Compaed with traditional PID con- trollers, the adaptive PID controller has simple structure, good online adjusting ability, fast convergence and good robustness. The simulation experiments also show that the adaptive PID control system has high precision and fine antijamming ability.
基金Supported by the Ministerial Level Advanced Research Foundation(65822576)
文摘Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.
文摘An adaptive proportional–integral–derivative(PID)controller based on Q-learning algorithm is proposed to balance the cart–pole system in simulation environment.This controller was trained using Q-learning algorithm and implemented the learned Q-tables to change the gains of linear PID controllers according to the state of the system during the control process.The adaptive PID controller based on Q-learning algorithm was trained from a set of fixed initial positions and was able to balance the system starting from a series of initial positions that are different from the ones used in the training session,which achieved equivalent or even better performances in comparison with the conventional PID controller and the controller only uses Q-learning algorithm.This indicates the advantage of the adaptive PID controller based on Q-learning algorithm both in the generality of balancing the cart–pole system from a relatively wide range of initial positions and in the stabilisability of achieving smaller steady-state error.
基金Projects 0601033B supported by the Science Foundation for Post-doctoral Scientists of Jiangsu Province, 0C4466 and 0C060093the Scientific and Technological Foundation for Youth of China University of Mining & Technology
文摘Aimed at the lack of self-tuning PID parameters in conventional PID controllers, the structure and learning algorithm of an adaptive PID controller based on reinforcement learning were proposed. Actor-Critic learning was used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network was used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for complex nonlinear systems and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.
基金The author extends their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/18128).
文摘The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.