期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method 被引量:9
1
作者 Xiang Wang Zhitao Huang Yiyu Zhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期17-25,共9页
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time... This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation. 展开更多
关键词 underdetermined blind source separation (UBSS)time-frequency (TF) domain sparse representation methoditerative adaptive approach direction-of-arrival (DOA) estimationclustering validation.
下载PDF
Sensorless Monitoring of a Motor-Drive Machanical System Based on Adaptive Signal Decomposition 被引量:1
2
作者 MENG Qing-feng JIAO Li-cheng 《International Journal of Plant Engineering and Management》 2006年第1期1-7,共7页
A method for estimating current harmonics of an induction motor is introduced which is used for sensorless monitoring of a mechanical system driven by the motor. The method is based on an adaptive signal representatio... A method for estimating current harmonics of an induction motor is introduced which is used for sensorless monitoring of a mechanical system driven by the motor. The method is based on an adaptive signal representation and is proposed to extract weak harmonics from a noisy current signal, especially in the presence of additive interference caused by transient modulation waves. As an application, a rotor unbalance experiment of rotating machinery driven by an induction motor is carried out, The result shows that the eccentricity harmonic magnitude of a current signal obtained by the method represents the rotor unbalance conditions sensitively. Vibration analysis is used to validate the proposed method. 展开更多
关键词 sensorless monitoring current harmonics adaptive signal representation rotor unbalance
下载PDF
Two-Dimensional Direction Finding via Sequential Sparse Representations
3
作者 Yougen Xu Ying Lu +1 位作者 Yulin Huang Zhiwen Liu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期169-175,共7页
The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elev... The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elevation angles,and azimuth angles. For the estimation of elevation angles,the weighted sub-array smoothing technique for perfect data decorrelation is used to produce a covariance vector suitable for exact sparse representation,related only to the elevation angles. The estimates of elevation angles are then obtained by sparse restoration associated with this elevation angle dependent covariance vector. The estimates of elevation angles are further incorporated with weighted sub-array smoothing to yield a second covariance vector for precise sparse representation related to both elevation angles,and azimuth angles. The estimates of azimuth angles,automatically paired with the estimates of elevation angles,are finally obtained by sparse restoration associated with this latter elevation-azimuth angle related covariance vector. Simulation results are included to illustrate the performance of the proposed method. 展开更多
关键词 array signal processing adaptive array direction finding sparse representation
下载PDF
AN IMPROVED ALGORITHM OF GMM VOICE CONVERSION SYSTEM BASED ON CHANGING THE TIME-SCALE
4
作者 Zhou Ying Zhang Linghua 《Journal of Electronics(China)》 2011年第4期518-523,共6页
This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using A... This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spectrum(STRAIGHT) model is adopted to extract the spectrum features,and the GMM models are trained to generate the conversion function.The spectrum features of a source speech will be converted by the conversion function.The time-scale of speech is changed by extracting the converted features and adding to the spectrum.The conversion voice was evaluated by subjective and objective measurements.The results confirm that the transformed speech not only approximates the characteristics of the target speaker,but also more natural and more intelligible. 展开更多
关键词 Gaussian Mixture Models(GMM) Speech Transformation and representation using adaptive Interpolation of weiGHTed spectrum(STRAIGHT) TIME-SCALE Voice conversion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部