This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time...This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.展开更多
A method for estimating current harmonics of an induction motor is introduced which is used for sensorless monitoring of a mechanical system driven by the motor. The method is based on an adaptive signal representatio...A method for estimating current harmonics of an induction motor is introduced which is used for sensorless monitoring of a mechanical system driven by the motor. The method is based on an adaptive signal representation and is proposed to extract weak harmonics from a noisy current signal, especially in the presence of additive interference caused by transient modulation waves. As an application, a rotor unbalance experiment of rotating machinery driven by an induction motor is carried out, The result shows that the eccentricity harmonic magnitude of a current signal obtained by the method represents the rotor unbalance conditions sensitively. Vibration analysis is used to validate the proposed method.展开更多
The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elev...The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elevation angles,and azimuth angles. For the estimation of elevation angles,the weighted sub-array smoothing technique for perfect data decorrelation is used to produce a covariance vector suitable for exact sparse representation,related only to the elevation angles. The estimates of elevation angles are then obtained by sparse restoration associated with this elevation angle dependent covariance vector. The estimates of elevation angles are further incorporated with weighted sub-array smoothing to yield a second covariance vector for precise sparse representation related to both elevation angles,and azimuth angles. The estimates of azimuth angles,automatically paired with the estimates of elevation angles,are finally obtained by sparse restoration associated with this latter elevation-azimuth angle related covariance vector. Simulation results are included to illustrate the performance of the proposed method.展开更多
This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using A...This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spectrum(STRAIGHT) model is adopted to extract the spectrum features,and the GMM models are trained to generate the conversion function.The spectrum features of a source speech will be converted by the conversion function.The time-scale of speech is changed by extracting the converted features and adding to the spectrum.The conversion voice was evaluated by subjective and objective measurements.The results confirm that the transformed speech not only approximates the characteristics of the target speaker,but also more natural and more intelligible.展开更多
基金supported by the National Natural Science Foundation of China(61072120)
文摘This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.
基金This paper is sponsored by National Natural Science Foundation of China under Grant No.50475087
文摘A method for estimating current harmonics of an induction motor is introduced which is used for sensorless monitoring of a mechanical system driven by the motor. The method is based on an adaptive signal representation and is proposed to extract weak harmonics from a noisy current signal, especially in the presence of additive interference caused by transient modulation waves. As an application, a rotor unbalance experiment of rotating machinery driven by an induction motor is carried out, The result shows that the eccentricity harmonic magnitude of a current signal obtained by the method represents the rotor unbalance conditions sensitively. Vibration analysis is used to validate the proposed method.
基金Supported by the National Natural Science Foundation of China(61331019,61490691)
文摘The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elevation angles,and azimuth angles. For the estimation of elevation angles,the weighted sub-array smoothing technique for perfect data decorrelation is used to produce a covariance vector suitable for exact sparse representation,related only to the elevation angles. The estimates of elevation angles are then obtained by sparse restoration associated with this elevation angle dependent covariance vector. The estimates of elevation angles are further incorporated with weighted sub-array smoothing to yield a second covariance vector for precise sparse representation related to both elevation angles,and azimuth angles. The estimates of azimuth angles,automatically paired with the estimates of elevation angles,are finally obtained by sparse restoration associated with this latter elevation-azimuth angle related covariance vector. Simulation results are included to illustrate the performance of the proposed method.
基金Supported by the National Natural Science Foundation of China (No. 60872105)the Program for Science & Technology Innovative Research Team of Qing Lan Project in Higher Educational Institutions of Jiangsuthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spectrum(STRAIGHT) model is adopted to extract the spectrum features,and the GMM models are trained to generate the conversion function.The spectrum features of a source speech will be converted by the conversion function.The time-scale of speech is changed by extracting the converted features and adding to the spectrum.The conversion voice was evaluated by subjective and objective measurements.The results confirm that the transformed speech not only approximates the characteristics of the target speaker,but also more natural and more intelligible.