This paper addresses the planning problem of residential micro combined heat and power (micro-CHP) systems (including micro-generation units, auxiliary boilers, and thermal storage tanks) considering the associated te...This paper addresses the planning problem of residential micro combined heat and power (micro-CHP) systems (including micro-generation units, auxiliary boilers, and thermal storage tanks) considering the associated technical and economic factors. Since the accurate values of the thermal and electrical loads of this system cannot be exactly predicted for the planning horizon, the thermal and electrical load uncertainties are modeled using a two-stage adaptive robust optimization method based on a polyhedral uncertainty set. A solution method, which is composed of column-and-constraint generation (C&CG) algorithm and block coordinate descent (BCD) method, is proposed to efficiently solve this adaptive robust optimization model. Numerical results from a practical case study show the effective performance of the proposed adaptive robust model for residential micro-CHP planning and its solution method.展开更多
This paper proposes a sliding mode controller based on robust model reference adaptive proportional-integral(RMRA-PI)control for a stand-alone voltage source inverter(SA-VSI).The proposed controller has two control lo...This paper proposes a sliding mode controller based on robust model reference adaptive proportional-integral(RMRA-PI)control for a stand-alone voltage source inverter(SA-VSI).The proposed controller has two control loops where the coefficients of PI controller are regulated by the adaptive sliding law.This method is used to regulate the output voltage of the inverter under different load conditions and uncertainty,and adapts the output to the reference model to reduce the total harmonic distortion(THD).In this paper,the stability of the proposed controller is proven by using Lyapunov's theory and Barbalet’s lemma.The proposed controller performs well in voltage regulation such as low THD under sudden load change and uncertainty.Also,the results of the proposed controller are compared with PI controller to show the effectiveness of the presented control system.展开更多
The technological,economic,and environmental benefits of photovoltaic(PV)systems have led to their wide-spread adoption in recent years as a source of electricity generation.However,precisely identifying a PV system’...The technological,economic,and environmental benefits of photovoltaic(PV)systems have led to their wide-spread adoption in recent years as a source of electricity generation.However,precisely identifying a PV system’s maximum power point(MPP)under normal and shaded weather conditions is crucial to conserving the maximum generated power.One of the biggest concerns with a PV system is the existence of partial shading,which produces multiple peaks in the P–V characteristic curve.In these circumstances,classical maximum power point tracking(MPPT)approaches are prone to getting stuck on local peaks and failing to follow the global maximum power point(GMPP).To overcome such obstacles,a new Lyapunov-based Robust Model Reference Adaptive Controller(LRMRAC)is designed and implemented to reach GMPP rapidly and ripple-free.The proposed controller also achieves MPP accurately under slow,abrupt and rapid changes in radiation,temperature and load profile.Simulation and OPAL-RT real-time simulators in various scenarios are performed to verify the superiority of the proposed approach over the other state-of-the-art methods,i.e.,ANFIS,INC,VSPO,and P&O.MPP and GMPP are accomplished in less than 3.8 ms and 10 ms,respectively.Based on the results presented,the LRMRAC controller appears to be a promising technique for MPPT in a PV system.展开更多
文摘This paper addresses the planning problem of residential micro combined heat and power (micro-CHP) systems (including micro-generation units, auxiliary boilers, and thermal storage tanks) considering the associated technical and economic factors. Since the accurate values of the thermal and electrical loads of this system cannot be exactly predicted for the planning horizon, the thermal and electrical load uncertainties are modeled using a two-stage adaptive robust optimization method based on a polyhedral uncertainty set. A solution method, which is composed of column-and-constraint generation (C&CG) algorithm and block coordinate descent (BCD) method, is proposed to efficiently solve this adaptive robust optimization model. Numerical results from a practical case study show the effective performance of the proposed adaptive robust model for residential micro-CHP planning and its solution method.
文摘This paper proposes a sliding mode controller based on robust model reference adaptive proportional-integral(RMRA-PI)control for a stand-alone voltage source inverter(SA-VSI).The proposed controller has two control loops where the coefficients of PI controller are regulated by the adaptive sliding law.This method is used to regulate the output voltage of the inverter under different load conditions and uncertainty,and adapts the output to the reference model to reduce the total harmonic distortion(THD).In this paper,the stability of the proposed controller is proven by using Lyapunov's theory and Barbalet’s lemma.The proposed controller performs well in voltage regulation such as low THD under sudden load change and uncertainty.Also,the results of the proposed controller are compared with PI controller to show the effectiveness of the presented control system.
文摘The technological,economic,and environmental benefits of photovoltaic(PV)systems have led to their wide-spread adoption in recent years as a source of electricity generation.However,precisely identifying a PV system’s maximum power point(MPP)under normal and shaded weather conditions is crucial to conserving the maximum generated power.One of the biggest concerns with a PV system is the existence of partial shading,which produces multiple peaks in the P–V characteristic curve.In these circumstances,classical maximum power point tracking(MPPT)approaches are prone to getting stuck on local peaks and failing to follow the global maximum power point(GMPP).To overcome such obstacles,a new Lyapunov-based Robust Model Reference Adaptive Controller(LRMRAC)is designed and implemented to reach GMPP rapidly and ripple-free.The proposed controller also achieves MPP accurately under slow,abrupt and rapid changes in radiation,temperature and load profile.Simulation and OPAL-RT real-time simulators in various scenarios are performed to verify the superiority of the proposed approach over the other state-of-the-art methods,i.e.,ANFIS,INC,VSPO,and P&O.MPP and GMPP are accomplished in less than 3.8 ms and 10 ms,respectively.Based on the results presented,the LRMRAC controller appears to be a promising technique for MPPT in a PV system.