In this paper, we study about a method to optimize the fused track quality in intelligence network of radar target fusion system, considering the role of people in the fusion system;we start to find ways to optimize t...In this paper, we study about a method to optimize the fused track quality in intelligence network of radar target fusion system, considering the role of people in the fusion system;we start to find ways to optimize the quality of the fused track, and adaptive smoothing method is proposed based on fuzzy theory. Tests show that this method can greatly improve the quality of the fused track system for battlefield reconnaissance provides high-quality, high-reliability battlefield.展开更多
Background In the smoothed particle hydrodynamics(SPH)fluid simulation method,the smoothing length affects not only the process of neighbor search but also the calculation accuracy of the pressure solver.Therefore,it ...Background In the smoothed particle hydrodynamics(SPH)fluid simulation method,the smoothing length affects not only the process of neighbor search but also the calculation accuracy of the pressure solver.Therefore,it plays a crucial role in ensuring the accuracy and stability of SPH.Methods In this study,an adaptive SPH fluid simulation method with a variable smoothing length is designed.In this method,the smoothing length is adaptively adjusted according to the ratio of the particle density to the weighted average of the density of the neighboring particles.Additionally,a neighbor search scheme and kernel function scheme are designed to solve the asymmetry problems caused by the variable smoothing length.Results The simulation efficiency of the proposed algorithm is comparable to that of some classical methods,and the variance of the number of neighboring particles is reduced.Thus,the visual effect is more similar to the corresponding physical reality.Conclusions The precision of the interpolation calculation performed in the SPH algorithm is improved using the adaptive-smoothing length scheme;thus,the stability of the algorithm is enhanced,and a larger timestep is possible.展开更多
The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid reg...The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.展开更多
An adaptive endpoint detection algorithm based on band energy and adaptive smoothing algorithm is described. This algorithm utilizes the capability of adaptive smoothing algorithm that intensifies the discontinuity be...An adaptive endpoint detection algorithm based on band energy and adaptive smoothing algorithm is described. This algorithm utilizes the capability of adaptive smoothing algorithm that intensifies the discontinuity between local areas. The band energy features are selected because of their usefulness in detecting high energy regions (in the incoming signal) and making the distinction between speech and noise. Heuristic 'edge-focusing' is used to endpoint detection to save the time in iteration.展开更多
An effective hybrid optimization method is proposed by integrating an adaptive Kriging(A-Kriging)into an improved partial swarm optimization algorithm(IPSO)to give a so-called A-Kriging-IPSO for maximizing the bucklin...An effective hybrid optimization method is proposed by integrating an adaptive Kriging(A-Kriging)into an improved partial swarm optimization algorithm(IPSO)to give a so-called A-Kriging-IPSO for maximizing the buckling load of laminated composite plates(LCPs)under uniaxial and biaxial compressions.In this method,a novel iterative adaptive Kriging model,which is structured using two training sample sets as active and adaptive points,is utilized to directly predict the buckling load of the LCPs and to improve the efficiency of the optimization process.The active points are selected from the initial data set while the adaptive points are generated using the radial random-based convex samples.The cell-based smoothed discrete shear gap method(CS-DSG3)is employed to analyze the buckling behavior of the LCPs to provide the response of adaptive and input data sets.The buckling load of the LCPs is maximized by utilizing the IPSO algorithm.To demonstrate the efficiency and accuracy of the proposed methodology,the LCPs with different layers(2,3,4,and 10 layers),boundary conditions,aspect ratios and load patterns(biaxial and uniaxial loads)are investigated.The results obtained by proposed method are in good agreement with the literature results,but with less computational burden.By applying adaptive radial Kriging model,the accurate optimal resultsebased predictions of the buckling load are obtained for the studied LCPs.展开更多
Focus is laid on the adaptive practical output-tracking problem of a class of nonlinear systems with high-order lower-triangular structure and uncontrollable unstable linearization. Using the modified adaptive additio...Focus is laid on the adaptive practical output-tracking problem of a class of nonlinear systems with high-order lower-triangular structure and uncontrollable unstable linearization. Using the modified adaptive addition of a power integrator technique as a basic tool, a new smooth adaptive state feedback controller is designed. This controller can ensure all signals of the closed-loop systems are globally bounded and output tracking error is arbitrary small.展开更多
Edge is the key information in the process of image smoothing. Some edges, especially the weak edges, are difficult to maintain, which result in the local area being over-smoothed. For the protection of weak edges, we...Edge is the key information in the process of image smoothing. Some edges, especially the weak edges, are difficult to maintain, which result in the local area being over-smoothed. For the protection of weak edges, we propose an image smoothing algorithm based on global sparse structure and parameter adaptation. The algorithm decomposes the image into high frequency and low frequency part based on global sparse structure. The low frequency part contains less texture information which is relatively easy to smoothen. The high frequency part is more sensitive to edge information so it is more suitable for the selection of smoothing parameters. To reduce the computational complexity and improve the effect, we propose a bicubic polynomial fitting method to fit all the sample values into a surface. Finally, we use Alternating Direction Method of Multipliers (ADMM) to unify the whole algorithm and obtain the smoothed results by iterative optimization. Compared with traditional methods and deep learning methods, as well as the application tasks of edge extraction, image abstraction, pseudo-boundary removal, and image enhancement, it shows that our algorithm can preserve the local weak edge of the image more effectively, and the visual effect of smoothed results is better.展开更多
Based on the pulse-shaping unit in the front end of high-power laser facilities,we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivat...Based on the pulse-shaping unit in the front end of high-power laser facilities,we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivative adaptive smoothing filter for smooth pulse recovery,so as to effectively restrain the influence of electrical noise and FM-to-AM modulation in the time–power curve,and enhance the calibration accuracy of the pulse shape in the feedback control system.The related simulation and experiment results show that the proposed scheme can obtain a better shaping effect on the high-contrast temporal shape in comparison with the cumulative average algorithm and orthogonal matching pursuit algorithm combined with a traditional smoothing filter.The implementation of the hybrid scheme mechanism increased the signal-to-noise ratio of the laser pulse from about 11 dB to 30 dB,and the filtered pulse is smooth without modulation,with smoothness of about 98.8%.展开更多
Infrared small target detection is a significant and challenging topic for daily security. This paper proposes a novel model to detect LSS-target (low altitude, slow speed, and small target) under the complicated back...Infrared small target detection is a significant and challenging topic for daily security. This paper proposes a novel model to detect LSS-target (low altitude, slow speed, and small target) under the complicated background. Firstly, the fundamental constituents of an infrared image including the complexity and entropy are calculated, which are invoked as adaptive control parameters of smoothness. Secondly, the adaptive L0 gradient minimization smoothing based on texture complexity and information entropy (TCAIE-LGM) is proposed in order to remove noises and suppress low-amplitude details in infrared image abstraction. Finally, difference of Gaussian (DoG) map is incorporated into the pixel-based adaptive segmentation (PBAS) background modeling algorithm, which can differ LSS-target from the sophisticated background. Experimental results demonstrate that the proposed novel model has a high detection rate and produces fewer false alarms, which outperforms most state-of-the-art methods.展开更多
The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a ...The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a process paradigm before any physical implementation.It is not practical to simulate all possible designs to identify the optimal FSW practice due to the inefficiency associated with concurrent modeling of material flow and heat dissipation throughout the FSW.This study intends to develop a computational workflow based on the mesh-free FEM framework named smoothed particle hydrodynamics(SPH)which was integrated with adaptive neuro-fiizzy inference system(ANFIS)to evaluate the residual stress in the FSW process.An integrated SPH and ANFIS methodology was established and the well-trained ANIS was then used to predict how the FSW process depends on its parameters.To verify the SPH calculation,an itemized FSW case was performed on AZ91 Mg alloy and the induced residual stress was measured by ultrasonic testing.The suggested methodology can efficiently predict the residual stress distribution throughout friction stir welding of AZ91 alloy.展开更多
In recent years, modern optical processing technologies, such as single point diamond turning, ion beam etching, and magneto-theological finishing, arc getting break- throughs. Machining precisions of super-smooth opt...In recent years, modern optical processing technologies, such as single point diamond turning, ion beam etching, and magneto-theological finishing, arc getting break- throughs. Machining precisions of super-smooth optics have also been significantly improved. However, with increasing demands for the optical surface quality,展开更多
This paper proposes a robust Immersion and Invariance(I&I)adaptive coordinated controller for a class of uncertain linear-motor-driven biaxial gantry system subject to external disturbances for high-accuracy conto...This paper proposes a robust Immersion and Invariance(I&I)adaptive coordinated controller for a class of uncertain linear-motor-driven biaxial gantry system subject to external disturbances for high-accuracy contour tracking.Firstly,the dynamic model of the gantry system is transformed into task coordinate frame,through which the contour tracking can be regarded as a regulation problem.Based on the transformed system dynamics,an I&I-based adaptation law with smooth projection is proposed to estimate the unknown parameters.Different from traditional adaptive control,the proposed robust I&I adaptive control introduces a new term called tuning function in adaptation law to shape the dynamic behaviour of the estimation vector.Then the stability of the closed-loop system is proved by Lyapunov theory.Finally,comparative experiments are executed on an industrial biaxial gantry system with two different cases to verify the effectiveness of the proposed control law.展开更多
A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in...A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in conventional models and algorithms for the optimization of the structural topology. Its application to truss topological optimization with stress and displacement constraints is satisfactory, with convergence faster than that of sectional optimizations.展开更多
The performance the quaternion-Capon( Q-Capon) beamformer degraded when suppressing the interferences that are coherent with the signal of interest( SOI). To tackle the problem,the spatial smoothing technique is a...The performance the quaternion-Capon( Q-Capon) beamformer degraded when suppressing the interferences that are coherent with the signal of interest( SOI). To tackle the problem,the spatial smoothing technique is adopted in quaternion domain to decorrelate the interferences by using linearly and uniformly spaced two-component electromagnetic vector-sensors. By averaging several translational invariant subarray quaternion covariance matrices,the quaternion spatial smoothing is performed to prevent the SOI cancellation phenomena caused by the presence of coherent interferences. It is demonstrated that the quaternion spatial smoothing Q-Capon beamformer can suppress the coherent interferences remarkably while the computational cost is lower than the complex domain long vector spatial smoothing counterpart. Theoretical analyses and simulation results validate the efficacy of the spatially smoothed Q-Capon beamformer in terms of coherent interference suppression capability.展开更多
文摘In this paper, we study about a method to optimize the fused track quality in intelligence network of radar target fusion system, considering the role of people in the fusion system;we start to find ways to optimize the quality of the fused track, and adaptive smoothing method is proposed based on fuzzy theory. Tests show that this method can greatly improve the quality of the fused track system for battlefield reconnaissance provides high-quality, high-reliability battlefield.
基金National Natural Science Foundation of China(61976052,61876043)National Key R&D Program of China(2017YFB1002701,2017YFB1201203).
文摘Background In the smoothed particle hydrodynamics(SPH)fluid simulation method,the smoothing length affects not only the process of neighbor search but also the calculation accuracy of the pressure solver.Therefore,it plays a crucial role in ensuring the accuracy and stability of SPH.Methods In this study,an adaptive SPH fluid simulation method with a variable smoothing length is designed.In this method,the smoothing length is adaptively adjusted according to the ratio of the particle density to the weighted average of the density of the neighboring particles.Additionally,a neighbor search scheme and kernel function scheme are designed to solve the asymmetry problems caused by the variable smoothing length.Results The simulation efficiency of the proposed algorithm is comparable to that of some classical methods,and the variance of the number of neighboring particles is reduced.Thus,the visual effect is more similar to the corresponding physical reality.Conclusions The precision of the interpolation calculation performed in the SPH algorithm is improved using the adaptive-smoothing length scheme;thus,the stability of the algorithm is enhanced,and a larger timestep is possible.
基金supported by National Natural Science Foundation of China(Project No.52077079).
文摘The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.
文摘An adaptive endpoint detection algorithm based on band energy and adaptive smoothing algorithm is described. This algorithm utilizes the capability of adaptive smoothing algorithm that intensifies the discontinuity between local areas. The band energy features are selected because of their usefulness in detecting high energy regions (in the incoming signal) and making the distinction between speech and noise. Heuristic 'edge-focusing' is used to endpoint detection to save the time in iteration.
基金Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant number 107.02-2019.330.
文摘An effective hybrid optimization method is proposed by integrating an adaptive Kriging(A-Kriging)into an improved partial swarm optimization algorithm(IPSO)to give a so-called A-Kriging-IPSO for maximizing the buckling load of laminated composite plates(LCPs)under uniaxial and biaxial compressions.In this method,a novel iterative adaptive Kriging model,which is structured using two training sample sets as active and adaptive points,is utilized to directly predict the buckling load of the LCPs and to improve the efficiency of the optimization process.The active points are selected from the initial data set while the adaptive points are generated using the radial random-based convex samples.The cell-based smoothed discrete shear gap method(CS-DSG3)is employed to analyze the buckling behavior of the LCPs to provide the response of adaptive and input data sets.The buckling load of the LCPs is maximized by utilizing the IPSO algorithm.To demonstrate the efficiency and accuracy of the proposed methodology,the LCPs with different layers(2,3,4,and 10 layers),boundary conditions,aspect ratios and load patterns(biaxial and uniaxial loads)are investigated.The results obtained by proposed method are in good agreement with the literature results,but with less computational burden.By applying adaptive radial Kriging model,the accurate optimal resultsebased predictions of the buckling load are obtained for the studied LCPs.
基金This work was supported by the National Natural Sdence Foundation of China (No. 60304003)the National Sdence Foundation of Shandong Province (No. Q2002G02)
文摘Focus is laid on the adaptive practical output-tracking problem of a class of nonlinear systems with high-order lower-triangular structure and uncontrollable unstable linearization. Using the modified adaptive addition of a power integrator technique as a basic tool, a new smooth adaptive state feedback controller is designed. This controller can ensure all signals of the closed-loop systems are globally bounded and output tracking error is arbitrary small.
文摘Edge is the key information in the process of image smoothing. Some edges, especially the weak edges, are difficult to maintain, which result in the local area being over-smoothed. For the protection of weak edges, we propose an image smoothing algorithm based on global sparse structure and parameter adaptation. The algorithm decomposes the image into high frequency and low frequency part based on global sparse structure. The low frequency part contains less texture information which is relatively easy to smoothen. The high frequency part is more sensitive to edge information so it is more suitable for the selection of smoothing parameters. To reduce the computational complexity and improve the effect, we propose a bicubic polynomial fitting method to fit all the sample values into a surface. Finally, we use Alternating Direction Method of Multipliers (ADMM) to unify the whole algorithm and obtain the smoothed results by iterative optimization. Compared with traditional methods and deep learning methods, as well as the application tasks of edge extraction, image abstraction, pseudo-boundary removal, and image enhancement, it shows that our algorithm can preserve the local weak edge of the image more effectively, and the visual effect of smoothed results is better.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA25020303).
文摘Based on the pulse-shaping unit in the front end of high-power laser facilities,we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivative adaptive smoothing filter for smooth pulse recovery,so as to effectively restrain the influence of electrical noise and FM-to-AM modulation in the time–power curve,and enhance the calibration accuracy of the pulse shape in the feedback control system.The related simulation and experiment results show that the proposed scheme can obtain a better shaping effect on the high-contrast temporal shape in comparison with the cumulative average algorithm and orthogonal matching pursuit algorithm combined with a traditional smoothing filter.The implementation of the hybrid scheme mechanism increased the signal-to-noise ratio of the laser pulse from about 11 dB to 30 dB,and the filtered pulse is smooth without modulation,with smoothness of about 98.8%.
基金the National Natural Science Foundation of China (Grant No.61602432).
文摘Infrared small target detection is a significant and challenging topic for daily security. This paper proposes a novel model to detect LSS-target (low altitude, slow speed, and small target) under the complicated background. Firstly, the fundamental constituents of an infrared image including the complexity and entropy are calculated, which are invoked as adaptive control parameters of smoothness. Secondly, the adaptive L0 gradient minimization smoothing based on texture complexity and information entropy (TCAIE-LGM) is proposed in order to remove noises and suppress low-amplitude details in infrared image abstraction. Finally, difference of Gaussian (DoG) map is incorporated into the pixel-based adaptive segmentation (PBAS) background modeling algorithm, which can differ LSS-target from the sophisticated background. Experimental results demonstrate that the proposed novel model has a high detection rate and produces fewer false alarms, which outperforms most state-of-the-art methods.
文摘The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a process paradigm before any physical implementation.It is not practical to simulate all possible designs to identify the optimal FSW practice due to the inefficiency associated with concurrent modeling of material flow and heat dissipation throughout the FSW.This study intends to develop a computational workflow based on the mesh-free FEM framework named smoothed particle hydrodynamics(SPH)which was integrated with adaptive neuro-fiizzy inference system(ANFIS)to evaluate the residual stress in the FSW process.An integrated SPH and ANFIS methodology was established and the well-trained ANIS was then used to predict how the FSW process depends on its parameters.To verify the SPH calculation,an itemized FSW case was performed on AZ91 Mg alloy and the induced residual stress was measured by ultrasonic testing.The suggested methodology can efficiently predict the residual stress distribution throughout friction stir welding of AZ91 alloy.
基金supported by the National Natural Science Foundation of China(Nos.61627825 and 11275172)the State Key Laboratory of Modern Optical Instrumentation Innovation Program(MOI)(No.MOI2015 B06)
文摘In recent years, modern optical processing technologies, such as single point diamond turning, ion beam etching, and magneto-theological finishing, arc getting break- throughs. Machining precisions of super-smooth optics have also been significantly improved. However, with increasing demands for the optical surface quality,
基金the National Natural Science Foundation of China[Grant Number 61673050].
文摘This paper proposes a robust Immersion and Invariance(I&I)adaptive coordinated controller for a class of uncertain linear-motor-driven biaxial gantry system subject to external disturbances for high-accuracy contour tracking.Firstly,the dynamic model of the gantry system is transformed into task coordinate frame,through which the contour tracking can be regarded as a regulation problem.Based on the transformed system dynamics,an I&I-based adaptation law with smooth projection is proposed to estimate the unknown parameters.Different from traditional adaptive control,the proposed robust I&I adaptive control introduces a new term called tuning function in adaptation law to shape the dynamic behaviour of the estimation vector.Then the stability of the closed-loop system is proved by Lyapunov theory.Finally,comparative experiments are executed on an industrial biaxial gantry system with two different cases to verify the effectiveness of the proposed control law.
基金The project supported by State Key Laboratory of Structural Analyses of Industrial Equipment
文摘A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in conventional models and algorithms for the optimization of the structural topology. Its application to truss topological optimization with stress and displacement constraints is satisfactory, with convergence faster than that of sectional optimizations.
基金Supported by the National Natural Science Foundation of China(61331019)
文摘The performance the quaternion-Capon( Q-Capon) beamformer degraded when suppressing the interferences that are coherent with the signal of interest( SOI). To tackle the problem,the spatial smoothing technique is adopted in quaternion domain to decorrelate the interferences by using linearly and uniformly spaced two-component electromagnetic vector-sensors. By averaging several translational invariant subarray quaternion covariance matrices,the quaternion spatial smoothing is performed to prevent the SOI cancellation phenomena caused by the presence of coherent interferences. It is demonstrated that the quaternion spatial smoothing Q-Capon beamformer can suppress the coherent interferences remarkably while the computational cost is lower than the complex domain long vector spatial smoothing counterpart. Theoretical analyses and simulation results validate the efficacy of the spatially smoothed Q-Capon beamformer in terms of coherent interference suppression capability.