Communication-dependent and software-based distributed energy resources(DERs)are extensively integrated into modern microgrids,providing extensive benefits such as increased distributed controllability,scalability,and...Communication-dependent and software-based distributed energy resources(DERs)are extensively integrated into modern microgrids,providing extensive benefits such as increased distributed controllability,scalability,and observability.However,malicious cyber-attackers can exploit various potential vulnerabilities.In this study,a programmable adaptive security scanning(PASS)approach is presented to protect DER inverters against various power-bot attacks.Specifically,three different types of attacks,namely controller manipulation,replay,and injection attacks,are considered.This approach employs both software-defined networking technique and a novel coordinated detection method capable of enabling programmable and scalable networked microgrids(NMs)in an ultra-resilient,time-saving,and autonomous manner.The coordinated detection method efficiently identifies the location and type of power-bot attacks without disrupting normal NM operations.Extensive simulation results validate the efficacy and practicality of the PASS for securing NMs.展开更多
Adaptive optics scanning laser ophthalmoscopy(AOSLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics(AO) and AO-SLO. Then it co...Adaptive optics scanning laser ophthalmoscopy(AOSLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics(AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods(fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques(adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors(cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.展开更多
Cone photoreceptor cell identication is important for the early diagnosis of retinopathy.In this study,an object detection algorithm is used for cone cell identication in confocal adaptive optics scanning laser ophtha...Cone photoreceptor cell identication is important for the early diagnosis of retinopathy.In this study,an object detection algorithm is used for cone cell identication in confocal adaptive optics scanning laser ophthalmoscope(AOSLO)images.An effectiveness evaluation of identication using the proposed method reveals precision,recall,and F_(1)-score of 95.8%,96.5%,and 96.1%,respectively,considering manual identication as the ground truth.Various object detection and identication results from images with different cone photoreceptor cell distributions further demonstrate the performance of the proposed method.Overall,the proposed method can accurately identify cone photoreceptor cells on confocal adaptive optics scanning laser ophthalmoscope images,being comparable to manual identication.展开更多
An automated superpixels identification/mosaicking method is presented for the analysis of cone photoreceptor cells with the use of adaptive optics scanning laser ophthalmoscope(AO-SLO) images. This is an image overse...An automated superpixels identification/mosaicking method is presented for the analysis of cone photoreceptor cells with the use of adaptive optics scanning laser ophthalmoscope(AO-SLO) images. This is an image oversegmentation method used for the identification and mosaicking of cone photoreceptor cells in AO-SLO images.It includes image denoising, estimation of the cone photoreceptor cell number, superpixels segmentation, merging of superpixels, and final identification and mosaicking processing steps. The effectiveness of the presented method was confirmed based on its comparison with a manual method in terms of precision, recall, and F1-score of 77.3%, 95.2%, and 85.3%, respectively.展开更多
A bimorph deformable mirror (DM) with a large stroke of more than 30 μm using 35 actuators is presented and characterized for an adaptive optics (AO) confocal scanning laser ophthalmoscope application. Facilitate...A bimorph deformable mirror (DM) with a large stroke of more than 30 μm using 35 actuators is presented and characterized for an adaptive optics (AO) confocal scanning laser ophthalmoscope application. Facilitated with a Shack-Hartmann wavefront sensor, the bimorph DM-based AO operates closed-loop AO corrections for hu- man eyes and reduces wavefront aberrations in most eyes to below 0.1 μm rms. Results from living eyes, including one exhibiting ~5D of myopia and ~2D of astigmatism along with notable high-order aberrations, reveal a prac- tical efficient aberration correction and demonstrate a great benefit for retina imaging, including improving resolution, increasing brightness, and enhancing the contrast of images.展开更多
基金This work was supported in part by the National Science Foundation,USA(ECCS-2018492,CNS-2006828,ECCS-2002897,and OIA-2040599).
文摘Communication-dependent and software-based distributed energy resources(DERs)are extensively integrated into modern microgrids,providing extensive benefits such as increased distributed controllability,scalability,and observability.However,malicious cyber-attackers can exploit various potential vulnerabilities.In this study,a programmable adaptive security scanning(PASS)approach is presented to protect DER inverters against various power-bot attacks.Specifically,three different types of attacks,namely controller manipulation,replay,and injection attacks,are considered.This approach employs both software-defined networking technique and a novel coordinated detection method capable of enabling programmable and scalable networked microgrids(NMs)in an ultra-resilient,time-saving,and autonomous manner.The coordinated detection method efficiently identifies the location and type of power-bot attacks without disrupting normal NM operations.Extensive simulation results validate the efficacy and practicality of the PASS for securing NMs.
基金Supported by National Key Scientific Instrument and Equipment Development Project of China (No.2012YQ12008005)
文摘Adaptive optics scanning laser ophthalmoscopy(AOSLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics(AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods(fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques(adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors(cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.
基金the Natural Science Foundation of Jiangsu Province(BK20200214)National Key R&D Program of China(2017YFB0403701)+5 种基金Jiangsu Province Key R&D Program(BE2019682 and BE2018667)National Natural Science Foundation of China(61605210,61675226,and 62075235)Youth Innovation Promotion Association of Chinese Academy of Sciences(2019320)Frontier Science Research Project of the Chinese Academy of Sciences(QYZDB-SSW-JSC03)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB02060000)and Entrepreneurship and Innova-tion Talents in Jiangsu Province(Innovation of Scienti¯c Research Institutes).
文摘Cone photoreceptor cell identication is important for the early diagnosis of retinopathy.In this study,an object detection algorithm is used for cone cell identication in confocal adaptive optics scanning laser ophthalmoscope(AOSLO)images.An effectiveness evaluation of identication using the proposed method reveals precision,recall,and F_(1)-score of 95.8%,96.5%,and 96.1%,respectively,considering manual identication as the ground truth.Various object detection and identication results from images with different cone photoreceptor cell distributions further demonstrate the performance of the proposed method.Overall,the proposed method can accurately identify cone photoreceptor cells on confocal adaptive optics scanning laser ophthalmoscope images,being comparable to manual identication.
基金supported by the Jiangsu Provincial Key R&D Program (Nos. BE2019682 and BE2018667)National Natural Science Foundation of China(Nos. 61605210,61675226,and 61378090)+3 种基金Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2019320)National Key R&D Program of China(Nos. 2016YFC0102500 and 2017YFB0403700)Frontier Science Research Project of the Chinese Academy of Sciences (No. QYZDB-SSW-JSC03)Strategic Priority Research Program of the Chinese Academy of Sciences(No. XDB02060000)
文摘An automated superpixels identification/mosaicking method is presented for the analysis of cone photoreceptor cells with the use of adaptive optics scanning laser ophthalmoscope(AO-SLO) images. This is an image oversegmentation method used for the identification and mosaicking of cone photoreceptor cells in AO-SLO images.It includes image denoising, estimation of the cone photoreceptor cell number, superpixels segmentation, merging of superpixels, and final identification and mosaicking processing steps. The effectiveness of the presented method was confirmed based on its comparison with a manual method in terms of precision, recall, and F1-score of 77.3%, 95.2%, and 85.3%, respectively.
基金supported by the National Science Foundation of China(No.61605210)the National Instrumentation Program(NIP)(No.2012YQ120080)+4 种基金the National Key Research and Development Program of China(No.2016YFC0102500)the Jiangsu Province Science Fund for Distinguished Young Scholars(No.BK20060010)the Frontier Science Research Project of the Chinese Academy of Sciences(No.QYZDB-SSWJSC03)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB02060000)the Zhejiang Province Technology Program(No.2013C33170)
文摘A bimorph deformable mirror (DM) with a large stroke of more than 30 μm using 35 actuators is presented and characterized for an adaptive optics (AO) confocal scanning laser ophthalmoscope application. Facilitated with a Shack-Hartmann wavefront sensor, the bimorph DM-based AO operates closed-loop AO corrections for hu- man eyes and reduces wavefront aberrations in most eyes to below 0.1 μm rms. Results from living eyes, including one exhibiting ~5D of myopia and ~2D of astigmatism along with notable high-order aberrations, reveal a prac- tical efficient aberration correction and demonstrate a great benefit for retina imaging, including improving resolution, increasing brightness, and enhancing the contrast of images.