Otoacoustic emissions (OAEs) has been considered as an excellent objective tool in clinics for diagnosing hearing loss. The signal-to-noise ratio (SNR) and correlation coefficient of OAEs are very important for the pu...Otoacoustic emissions (OAEs) has been considered as an excellent objective tool in clinics for diagnosing hearing loss. The signal-to-noise ratio (SNR) and correlation coefficient of OAEs are very important for the purpose of diagnosis. An adaptive signal enhancer (ASE) based on the Least Mean Square (LMS) algorithm is presented to detect transient evoked OAEs (TEOAEs). The TEOAEs detection results from 106 ears show that ASE reaches better estimation of TEOAEs than a conventional ensemble averaging (EA) technique. With the ASE, the improvement of SNR was increased faster than that with the EA and the number of sweeps required can be markedly reduced. The detection time with ASE could be shortened by about 50% in comparison with that of EA.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.39870212)
文摘Otoacoustic emissions (OAEs) has been considered as an excellent objective tool in clinics for diagnosing hearing loss. The signal-to-noise ratio (SNR) and correlation coefficient of OAEs are very important for the purpose of diagnosis. An adaptive signal enhancer (ASE) based on the Least Mean Square (LMS) algorithm is presented to detect transient evoked OAEs (TEOAEs). The TEOAEs detection results from 106 ears show that ASE reaches better estimation of TEOAEs than a conventional ensemble averaging (EA) technique. With the ASE, the improvement of SNR was increased faster than that with the EA and the number of sweeps required can be markedly reduced. The detection time with ASE could be shortened by about 50% in comparison with that of EA.