Single unmanned aerial vehicle(UAV)multitasking plays an important role in multiple UAVs cooperative control,which is as well as the most complicated and hardest part.This paper establishes a threedimensional topograp...Single unmanned aerial vehicle(UAV)multitasking plays an important role in multiple UAVs cooperative control,which is as well as the most complicated and hardest part.This paper establishes a threedimensional topographical map,and an improved adaptive differential evolution(IADE)algorithm is proposed for single UAV multitasking.As an optimized problem,the efficiency of using standard differential evolution to obtain the global optimal solution is very low to avoid this problem.Therefore,the algorithm adopts the mutation factor and crossover factor into dynamic adaptive functions,which makes the crossover factor and variation factor can be adjusted with the number of population iteration and individual fitness value,letting the algorithm exploration and development more reasonable.The experimental results implicate that the IADE algorithm has better performance,higher convergence and efficiency to solve the multitasking problem compared with other algorithms.展开更多
针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。I...针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。IMBO算法通过精英反向学习策略对初始帝王蝶种群进行优化,得到适应度值较优的初始帝王蝶个体,进而能够改善帝王蝶种群的多样性;引入差分进化算法启发的变异操作以及自适应策略对帝王蝶个体的寻优方式进行改进,扩大了算法的搜索空间;引入了高斯-柯西变异算子,自适应调整变异步长,避免算法陷入局部最优。将IMBO应用于ML-DOA,实验表明,与传统的DOA估计算法相比,在不同信源数目、信噪比以及种群数量下,本文提出的算法收敛性能更好,均方根误差更低,运算量更小。展开更多
针对传统粗糙集理论在属性约简中存在计算复杂度高、易陷入局部最优解等问题,结合差分教学优化算法的全局搜索能力和粗糙集在处理不精确和不确定数据方面的优势,提出融合差分教学优化的粗糙集属性约简算法(rough set attribute reductio...针对传统粗糙集理论在属性约简中存在计算复杂度高、易陷入局部最优解等问题,结合差分教学优化算法的全局搜索能力和粗糙集在处理不精确和不确定数据方面的优势,提出融合差分教学优化的粗糙集属性约简算法(rough set attribute reduction algorithm based on differential teaching-learning optimization, AR-DTLBO)。首先,引入自适应教学因子和差分变异策略对教学优化算法进行改进,提高算法的搜索能力和优化性能;其次,通过改进后的教学优化算法“教”和“学”两个阶段对属性约简过程进行优化,降低了数据集的维度和复杂性;最后,在UCI数据库中的8个数据集上将所提算法和其他六种算法进行对比实验。实验结果表明,该算法在约简长度、约简时间、约简率和分类精度上均取得了良好的效果,实现了对数据集的有效约简和优化,能够有效减少冗余信息并提高决策规则的准确性,为决策分析和数据挖掘等领域提供了有效支撑。展开更多
文摘Single unmanned aerial vehicle(UAV)multitasking plays an important role in multiple UAVs cooperative control,which is as well as the most complicated and hardest part.This paper establishes a threedimensional topographical map,and an improved adaptive differential evolution(IADE)algorithm is proposed for single UAV multitasking.As an optimized problem,the efficiency of using standard differential evolution to obtain the global optimal solution is very low to avoid this problem.Therefore,the algorithm adopts the mutation factor and crossover factor into dynamic adaptive functions,which makes the crossover factor and variation factor can be adjusted with the number of population iteration and individual fitness value,letting the algorithm exploration and development more reasonable.The experimental results implicate that the IADE algorithm has better performance,higher convergence and efficiency to solve the multitasking problem compared with other algorithms.
文摘针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。IMBO算法通过精英反向学习策略对初始帝王蝶种群进行优化,得到适应度值较优的初始帝王蝶个体,进而能够改善帝王蝶种群的多样性;引入差分进化算法启发的变异操作以及自适应策略对帝王蝶个体的寻优方式进行改进,扩大了算法的搜索空间;引入了高斯-柯西变异算子,自适应调整变异步长,避免算法陷入局部最优。将IMBO应用于ML-DOA,实验表明,与传统的DOA估计算法相比,在不同信源数目、信噪比以及种群数量下,本文提出的算法收敛性能更好,均方根误差更低,运算量更小。
文摘针对传统粗糙集理论在属性约简中存在计算复杂度高、易陷入局部最优解等问题,结合差分教学优化算法的全局搜索能力和粗糙集在处理不精确和不确定数据方面的优势,提出融合差分教学优化的粗糙集属性约简算法(rough set attribute reduction algorithm based on differential teaching-learning optimization, AR-DTLBO)。首先,引入自适应教学因子和差分变异策略对教学优化算法进行改进,提高算法的搜索能力和优化性能;其次,通过改进后的教学优化算法“教”和“学”两个阶段对属性约简过程进行优化,降低了数据集的维度和复杂性;最后,在UCI数据库中的8个数据集上将所提算法和其他六种算法进行对比实验。实验结果表明,该算法在约简长度、约简时间、约简率和分类精度上均取得了良好的效果,实现了对数据集的有效约简和优化,能够有效减少冗余信息并提高决策规则的准确性,为决策分析和数据挖掘等领域提供了有效支撑。