The multiple coupling of composite laminates has a unique advantage in improving the macro mechanical properties of composite structures.A total of three hygro-thermally stablemulti-coupled laminates with extensiontwi...The multiple coupling of composite laminates has a unique advantage in improving the macro mechanical properties of composite structures.A total of three hygro-thermally stablemulti-coupled laminates with extensiontwisting coupling were presented,which were conducive to the formation of passive adaptive structures.Then,the multi-coupled laminates were used to design the bending-twisting coupled box structure,in which the configuration of laminate and box structure could be extended to variable cross-section configuration.The optimal design of stacking sequence was realized,the optimization objectives of which were to maximize bending-twisting coupling of box structure and extension-twisting coupling of laminate,respectively.The effects of multiple coupling on hygro-thermal stability,coupling,failure strength,buckling load,robustness and other comprehensive mechanical properties of laminates and box structures were analyzed by parametric modeling method.The results show that the extension-twisting coupling of laminate and the bending-twisting coupling of box structures can be greatly improved by 450%and 260%at maximum,respectively.Meanwhile,it would have a negative impact on the failure strength and buckling load,which,however,can be minimized by a reasonable paving method.Multicoupled laminates have good robustness,and the bending-twisting coupling helps improve robustness.Finally,the hygro-thermal stability and mechanical properties were verified by numerical simulation with finite element method.展开更多
利用结构动力参数的改变对空间钢网架进行损伤分析,其中许多指标对损伤并不敏感.文中通过结构有限元分析软件AN SY S得到网架结构位移模态分析数据,采用杆件轴向应变变化率的模态分析技术针对不同损伤状况的钢结构网架进行损伤识别,能...利用结构动力参数的改变对空间钢网架进行损伤分析,其中许多指标对损伤并不敏感.文中通过结构有限元分析软件AN SY S得到网架结构位移模态分析数据,采用杆件轴向应变变化率的模态分析技术针对不同损伤状况的钢结构网架进行损伤识别,能够较为准确地诊断出网架杆件的损伤位置.展开更多
基金the National Natural Science Foundation of China(Grant No.11472003)the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ30770)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.CX20200007).
文摘The multiple coupling of composite laminates has a unique advantage in improving the macro mechanical properties of composite structures.A total of three hygro-thermally stablemulti-coupled laminates with extensiontwisting coupling were presented,which were conducive to the formation of passive adaptive structures.Then,the multi-coupled laminates were used to design the bending-twisting coupled box structure,in which the configuration of laminate and box structure could be extended to variable cross-section configuration.The optimal design of stacking sequence was realized,the optimization objectives of which were to maximize bending-twisting coupling of box structure and extension-twisting coupling of laminate,respectively.The effects of multiple coupling on hygro-thermal stability,coupling,failure strength,buckling load,robustness and other comprehensive mechanical properties of laminates and box structures were analyzed by parametric modeling method.The results show that the extension-twisting coupling of laminate and the bending-twisting coupling of box structures can be greatly improved by 450%and 260%at maximum,respectively.Meanwhile,it would have a negative impact on the failure strength and buckling load,which,however,can be minimized by a reasonable paving method.Multicoupled laminates have good robustness,and the bending-twisting coupling helps improve robustness.Finally,the hygro-thermal stability and mechanical properties were verified by numerical simulation with finite element method.