High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode...High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models.展开更多
This paper aims at eliminating the asymmetric and saturated hysteresis nonlinearities by designing hysteresis pseudo inverse compensator and robust adaptive dynamic surface control(DSC)scheme.The"pseudo inverse&q...This paper aims at eliminating the asymmetric and saturated hysteresis nonlinearities by designing hysteresis pseudo inverse compensator and robust adaptive dynamic surface control(DSC)scheme.The"pseudo inverse"means that an on-line calculation mechanism of approximate control signal is developed by applying a searching method to the designed temporary control signal where the true control signal is included.The main contributions are summarized as:1)to our best knowledge,it is the first time to compensate the asymmetric and saturated hysteresis by using hysteresis pseudo inverse compensator because the construction of the true saturated-type hysteresis inverse model is very difficult;2)by designing the saturated-type hysteresis pseudo inverse compensator,the construction of true explicit hysteresis inverse and the identifications of its corresponding unknown parameters are not required when dealing with the saturated-type hysteresis;3)by combining DSC technique with the tracking error transformed function,the"explosion of complexity"problem in backstepping method is overcome and the prespecified tracking performance is achieved.Analysis of stability and experimental results on the hardware-inloop platform illustrate the effectiveness of the proposed adaptive pseudo inverse control scheme.展开更多
In this paper,the car-following control problem of nonholonomic autonomous electric vehicles in the curved highway is studied.Owing to the fact that the nonholonomic autonomous electric vehicles have the features of s...In this paper,the car-following control problem of nonholonomic autonomous electric vehicles in the curved highway is studied.Owing to the fact that the nonholonomic autonomous electric vehicles have the features of strong coupling,parametric uncertainties,nonlinearities and external disturbances,a novel integrated adaptive car-following control system is constructed to supervise the longitudinal and lateral motions of vehicles.Firstly,an adaptive fuzzy dynamic surface car-following control strategy is presented to determine a vector of total forces and torque of autonomous electric vehicles,which can guarantee the uniform ultimate boundedness of close-loop control signals.Then,an optimal tire forces distribution law is proposed to dynamically allocate the desired coupled tire longitudinal and lateral forces in real-time.Finally,simulation results illustrate the effectiveness and robustness of the proposed car-following control approach.展开更多
A model-based adaptive non-null interferometry (MANI) is proposed for steep optical freeform surfaces in situ testing. The deformable mirror (DM) affording the flexible compensation is monitored with the beam in t...A model-based adaptive non-null interferometry (MANI) is proposed for steep optical freeform surfaces in situ testing. The deformable mirror (DM) affording the flexible compensation is monitored with the beam in the interferometer by a wavefront sensor. The residual wavefront aberration in the non-null interferogram is eliminated by the multi-configuration ray tracing algorithm based on the system model, especially the DM surface model. The final figure error can be extracted together with the surface misalignment aberration correction. Experiments proving the feasibility of the MANI are shown.展开更多
In recent years, modern optical processing technologies, such as single point diamond turning, ion beam etching, and magneto-theological finishing, arc getting break- throughs. Machining precisions of super-smooth opt...In recent years, modern optical processing technologies, such as single point diamond turning, ion beam etching, and magneto-theological finishing, arc getting break- throughs. Machining precisions of super-smooth optics have also been significantly improved. However, with increasing demands for the optical surface quality,展开更多
Purpose–The purpose of this paper is to investigate the stabilization of unstable periodic orbits of Chua’s system using adaptive fuzzy sliding mode controllers with moving surface.Design/methodology/approach–For t...Purpose–The purpose of this paper is to investigate the stabilization of unstable periodic orbits of Chua’s system using adaptive fuzzy sliding mode controllers with moving surface.Design/methodology/approach–For this aim,the sliding mode controller and fuzzy systems are combined to achieve the stabilization.Then,the authors propose a moving sliding surface to improve robustness against uncertainties during the reaching phase,parameter variations and extraneous disturbances.Findings–Afterward,the authors design a sliding observer to estimate the unmeasurable states which are used in the previously designed controller.Originality/value–Numerical results are provided to show the effectiveness and robustness of the proposed method.展开更多
The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained t...The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained to be explored.An Integrated of Guidance,Control and Morphing(IGCM)method for Hypersonic Morphing Vehicle(HMV)was developed in this paper.The IGCM method contributed to an effective solution of morphing characteristic to improve flight performance and reject the disturbance for guidance and control system caused by the morphing system for HMV in gliding phase.The IGCM models were established based on the motion models and aerodynamic models of the variable span vehicle.Then the IGCM method was designed by adaptive block dynamic surface back-stepping method with stability proof.The parallel controlled simulations’results showed the effectiveness in accomplishing the flight mission of IGCM method in glide phase with smaller terminal errors.The velocity loss of HMV was reduced by 32.8%which inferred less flight time and larger terminal flight velocity than invariable span vehicle.Under the condition of large deviations of aerodynamic parameters and atmospheric density,the robustness of IGCM method with variable span was verified.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 50875024,51105040)Excellent Young Scholars Research Fund of Beijing Institute of Technology,China (Grant No.2010Y0102)Defense Creative Research Group Foundation of China(Grant No. GFTD0803)
文摘High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models.
基金supported in part by the National Natural Science Foundation of China(61673101,61973131,61733006,U1813201)the Japan Society for the Promotion of Science(C18K04212)+2 种基金the Science and Technology Project of Jilin Province(20180201009SF,20170414011GH,20180201004SF,20180101069JC)the Fundamental Research Funds for the Central Universities(N2008002)“Xing Liao Ying Cai”Program(XLYC1907073)。
文摘This paper aims at eliminating the asymmetric and saturated hysteresis nonlinearities by designing hysteresis pseudo inverse compensator and robust adaptive dynamic surface control(DSC)scheme.The"pseudo inverse"means that an on-line calculation mechanism of approximate control signal is developed by applying a searching method to the designed temporary control signal where the true control signal is included.The main contributions are summarized as:1)to our best knowledge,it is the first time to compensate the asymmetric and saturated hysteresis by using hysteresis pseudo inverse compensator because the construction of the true saturated-type hysteresis inverse model is very difficult;2)by designing the saturated-type hysteresis pseudo inverse compensator,the construction of true explicit hysteresis inverse and the identifications of its corresponding unknown parameters are not required when dealing with the saturated-type hysteresis;3)by combining DSC technique with the tracking error transformed function,the"explosion of complexity"problem in backstepping method is overcome and the prespecified tracking performance is achieved.Analysis of stability and experimental results on the hardware-inloop platform illustrate the effectiveness of the proposed adaptive pseudo inverse control scheme.
基金supported by the National Natural Science Foundation of China(GrantNos.U1564208&61304193)National Key R&D Program of China(Grant No.2016YFB0100900)the Natural Science Foundation of Fujian Province(Grant No.2017J01100)
文摘In this paper,the car-following control problem of nonholonomic autonomous electric vehicles in the curved highway is studied.Owing to the fact that the nonholonomic autonomous electric vehicles have the features of strong coupling,parametric uncertainties,nonlinearities and external disturbances,a novel integrated adaptive car-following control system is constructed to supervise the longitudinal and lateral motions of vehicles.Firstly,an adaptive fuzzy dynamic surface car-following control strategy is presented to determine a vector of total forces and torque of autonomous electric vehicles,which can guarantee the uniform ultimate boundedness of close-loop control signals.Then,an optimal tire forces distribution law is proposed to dynamically allocate the desired coupled tire longitudinal and lateral forces in real-time.Finally,simulation results illustrate the effectiveness and robustness of the proposed car-following control approach.
基金supported by the National Natural Science Foundation of China(No.61705002)supported by the National Natural Science Foundation of China(No.61675005)+2 种基金the Opening Project of Key Laboratory of Astronomical Optics & Technology in Nanjing Institute of Astronomical Optics & Technology of Chinese Academy of Sciences(No.CAS-KLAOT-KF201704)the Doctoral Startup Foundation of Anhui University(No.J01003208)the National Key R&D Program of China(No.2016YFC0301900)
文摘A model-based adaptive non-null interferometry (MANI) is proposed for steep optical freeform surfaces in situ testing. The deformable mirror (DM) affording the flexible compensation is monitored with the beam in the interferometer by a wavefront sensor. The residual wavefront aberration in the non-null interferogram is eliminated by the multi-configuration ray tracing algorithm based on the system model, especially the DM surface model. The final figure error can be extracted together with the surface misalignment aberration correction. Experiments proving the feasibility of the MANI are shown.
基金supported by the National Natural Science Foundation of China(Nos.61627825 and 11275172)the State Key Laboratory of Modern Optical Instrumentation Innovation Program(MOI)(No.MOI2015 B06)
文摘In recent years, modern optical processing technologies, such as single point diamond turning, ion beam etching, and magneto-theological finishing, arc getting break- throughs. Machining precisions of super-smooth optics have also been significantly improved. However, with increasing demands for the optical surface quality,
文摘Purpose–The purpose of this paper is to investigate the stabilization of unstable periodic orbits of Chua’s system using adaptive fuzzy sliding mode controllers with moving surface.Design/methodology/approach–For this aim,the sliding mode controller and fuzzy systems are combined to achieve the stabilization.Then,the authors propose a moving sliding surface to improve robustness against uncertainties during the reaching phase,parameter variations and extraneous disturbances.Findings–Afterward,the authors design a sliding observer to estimate the unmeasurable states which are used in the previously designed controller.Originality/value–Numerical results are provided to show the effectiveness and robustness of the proposed method.
文摘The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained to be explored.An Integrated of Guidance,Control and Morphing(IGCM)method for Hypersonic Morphing Vehicle(HMV)was developed in this paper.The IGCM method contributed to an effective solution of morphing characteristic to improve flight performance and reject the disturbance for guidance and control system caused by the morphing system for HMV in gliding phase.The IGCM models were established based on the motion models and aerodynamic models of the variable span vehicle.Then the IGCM method was designed by adaptive block dynamic surface back-stepping method with stability proof.The parallel controlled simulations’results showed the effectiveness in accomplishing the flight mission of IGCM method in glide phase with smaller terminal errors.The velocity loss of HMV was reduced by 32.8%which inferred less flight time and larger terminal flight velocity than invariable span vehicle.Under the condition of large deviations of aerodynamic parameters and atmospheric density,the robustness of IGCM method with variable span was verified.